230 research outputs found

    The Effects of a Single Transcranial Direct Current Stimulation Session on Impulsivity and Risk Among a Sample of Adult Recreational Cannabis Users

    Get PDF
    Individuals with substance use disorders exhibit risk-taking behaviors, potentially leading to negative consequences and difficulty maintaining recovery. Non-invasive brain stimulation techniques such as transcranial direct current stimulation (tDCS) have yielded mixed effects on risk-taking among healthy controls. Given the importance of risk-taking behaviors among substance-using samples, this study aimed to examine the effects of tDCS on risk-taking among a sample of adults using cannabis. Using a double-blind design, 27 cannabis users [M(SD) age = 32.48 (1.99), 41% female] were randomized, receiving one session of active or sham tDCS over the bilateral dorsolateral prefrontal cortex (dlPFC). Stimulation parameters closely followed prior studies with anodal right dlPFC and cathodal left dlPFC stimulation. Risk-taking—assessed via a modified Cambridge Gambling Task—was measured before and during tDCS. Delay and probability discounting tasks were assessed before and after stimulation. No significant effects of stimulation on risk-taking behavior were found. However, participants chose the less risky option ∼86% of the trials before stimulation which potentially contributed to ceiling effects. These results contradict one prior study showing increased risk-taking among cannabis users following tDCS. There was a significant increase in delay discounting of a $1000 delayed reward during stimulation for the sham group only, but no significant effects for probability discounting. The current study adds to conflicting and inconclusive literature on tDCS and cognition among substance-using samples. In conclusion, results suggest the ineffectiveness of single session dlPFC tDCS using an established stimulation protocol on risk-taking, although ceiling effects at baseline may have also prevented behavior change following tDCS

    Using Deep Learning for Task and Tremor Type Classification in People with Parkinson’s Disease

    Get PDF
    Hand tremor is one of the dominating symptoms of Parkinson’s disease (PD), which significantly limits activities of daily living. Along with medications, wearable devices have been proposed to suppress tremor. However, suppressing tremor without interfering with voluntary motion remains challenging and improvements are needed. The main goal of this work was to design algorithms for the automatic identification of the tremor type and voluntary motions, using only surface electromyography (sEMG) data. Towards this goal, a bidirectional long short-term memory (BiLSTM) algorithm was implemented that uses sEMG data to identify the motion and tremor type of people living with PD when performing a task. Moreover, in order to automate the training process, hyperparamter selection was performed using a regularized evolutionary algorithm. The results show that the accuracy of task classification among 15 people living with PD was (Formula presented.), and the accuracy of tremor classification was (Formula presented.). Both models performed significantly above chance levels (20% and 33% for task and tremor classification, respectively). Thus, it was concluded that the trained models, based on using purely sEMG signals, could successfully identify the task and tremor types

    Real-Time Performance Assessment of High-Order Tremor Estimators Used in a Wearable Tremor Suppression Device

    Get PDF
    The side effects and complications of traditional treatments for treating pathological tremor have led to a growing research interest in wearable tremor suppression devices (WTSDs) as an alternative approach. Similar to how the human brain coordinates the function of the human system, a tremor estimator determines how a WTSD functions. Although many tremor estimation algorithms have been developed and validated, whether they can be implemented on a cost-effective embedded system has not been studied; furthermore, their effectiveness on tremor signals with multiple harmonics has not been investigated. Therefore, in this study, four tremor estimators were implemented, evaluated, and compared: Weighted-frequency Fourier Linear Combiner (WFLC), WFLC-based Kalman Filter (WFLC-KF), Band-limited Multiple FLC, and enhanced High-order WFLC-KF (eHWFLC-KF). This study aimed to evaluate the performance of each algorithm on a bench-top tremor suppression system with 18 recorded tremor motion datasets; and compare the performance of each estimator. The experimental evaluation showed that the eHWFLC-KF-based WTSD achieved the best performance when suppressing tremor with an average of 89.3% reduction in tremor power, and an average error when tracking voluntary motion of 6.6°/s. Statistical analysis indicated that the eHWFLC-KF-based WTSD is able to reduce the power of tremor better than the WFLC and WFLC-KF, and the BMFLC-based WTSD is better than the WFLC. The performance when tracking voluntary motion is similar among all systems. This study has proven the feasibility of implementing various tremor estimators in a cost-effective embedded system, and provided a real-time performance assessment of four tremor estimators

    An integrated sequence stratigraphic, palaeoenvironmental, and chronostratigraphic analysis of the Tangahoe Formation, southern Taranaki coast, with implications for mid-Pliocene (c. 3.4–3.0 Ma) glacio-eustatic sea-level changes

    Get PDF
    Sediments of the mid-Pliocene (c. 3.4–3.0 Ma) Tangahoe Formation exposed in cliffs along the South Taranaki coastline of New Zealand comprise a 270 m thick, cyclothemic shallow-marine succession that has been gently warped into a north to south trending, low angle anticline. This study examines the sedimentologic, faunal, and petrographic characteristics of 10 Milankovitch-scale (6th order), shallow-marine depositional sequences exposed on the western limb of the anticline. The sequences are recognised on the basis of the cyclic vertical stacking of their constituent lithofacies, which are bound by sharp wave cut surfaces produced during transgressive shoreface erosion. Each sequence comprises three parts: (1) a 0.2–2 m thick, deepening upwards, basal suite of reworked bioclastic lag deposits (onlap shellbed) and/or an overlying matrix supported, molluscan shellbed of offshore shelf affinity (backlap shellbed); (2) a 5–20 m thick, gradually shoaling, aggradational siltstone succession; and (3) a 5–10 m thick, strongly progradational, well sorted “forced regressive” shoreline sandstone. The three-fold subdivision corresponds to transgressive, highstand, and regressive systems tracts (TSTs, HSTs, and RSTs) respectively, and represents deposition during a glacio-eustatic sea-level cycle. Lowstand systems tract sediments are not recorded because the outcrop is situated c. 100 km east of the contemporary shelf edge and was subaerially exposed at that time. Well developed, sharp- and gradational-based forced regressive sandstones contain a variety of storm-emplaced sedimentary structures, and represent the rapid and abrupt basinward translation of the shoreline on to a storm dominated, shallow shelf during eustatic sea-level fall. Increased supply of sediment from north-west South Island during “forced regression” is indicated from petrographic analyses of the heavy mineralogy of the sandstones. A chronology based on biostratigraphy and the correlation of a new magnetostratigraphy to the magnetic polarity timescale allows: (1) identification of the Mammoth (C2An.2r) and Kaena (C2An.1r) subchrons; (2) correlation of the coastal section to the Waipipian Stage; and (3) estimation of the age of the coastal section as 3.36–3.06 Ma. Qualitative assessment of foraminiferal census data and molluscan palaeoecology reveals cyclic changes in water depth from shelf to shoreline environments during the deposition of each sequence. Seven major cycles in water depth of between 20 and 50m have been correlated to individual 40 ka glacio-eustatic sea-level cycles on the marine oxygen isotope timescale. The coastal Tangahoe Formation provides a shallow-marine record of global glacio-eustasy prior to the development of significant ice sheets on Northern Hemisphere continents, and supports evidence from marine δ18O archives that changes in Antarctic ice volume were occurring during the Pliocene

    Size-Change Termination, Monotonicity Constraints and Ranking Functions

    Full text link
    Size-Change Termination (SCT) is a method of proving program termination based on the impossibility of infinite descent. To this end we may use a program abstraction in which transitions are described by monotonicity constraints over (abstract) variables. When only constraints of the form x>y' and x>=y' are allowed, we have size-change graphs. Both theory and practice are now more evolved in this restricted framework then in the general framework of monotonicity constraints. This paper shows that it is possible to extend and adapt some theory from the domain of size-change graphs to the general case, thus complementing previous work on monotonicity constraints. In particular, we present precise decision procedures for termination; and we provide a procedure to construct explicit global ranking functions from monotonicity constraints in singly-exponential time, which is better than what has been published so far even for size-change graphs.Comment: revised version of September 2

    Energy-based metrics for arthroscopic skills assessment

    Get PDF
    Minimally invasive skills assessment methods are essential in developing efficient surgical simulators and implementing consistent skills evaluation. Although numerous methods have been investigated in the literature, there is still a need to further improve the accuracy of surgical skills assessment. Energy expenditure can be an indication of motor skills proficiency. The goals of this study are to develop objective metrics based on energy expenditure, normalize these metrics, and investigate classifying trainees using these metrics. To this end, different forms of energy consisting of mechanical energy and work were considered and their values were divided by the related value of an ideal performance to develop normalized metrics. These metrics were used as inputs for various machine learning algorithms including support vector machines (SVM) and neural networks (NNs) for classification. The accuracy of the combination of the normalized energy-based metrics with these classifiers was evaluated through a leave-one-subject-out cross-validation. The proposed method was validated using 26 subjects at two experience levels (novices and experts) in three arthroscopic tasks. The results showed that there are statistically significant differences between novices and experts for almost all of the normalized energy-based metrics. The accuracy of classification using SVM and NN methods was between 70% and 95% for the various tasks. The results show that the normalized energy-based metrics and their combination with SVM and NN classifiers are capable of providing accurate classification of trainees. The assessment method proposed in this study can enhance surgical training by providing appropriate feedback to trainees about their level of expertise and can be used in the evaluation of proficiency

    Delay Discounting as a Transdiagnostic Process in Psychiatric Disorders: A Meta-analysis

    Get PDF
    Importance Delay discounting is a behavioral economic index of impulsive preferences for smaller-immediate or larger-delayed rewards that is argued to be a transdiagnostic process across health conditions. Studies suggest some psychiatric disorders are associated with differences in discounting compared with controls, but null findings have also been reported. Objective To conduct a meta-analysis of the published literature on delay discounting in people with psychiatric disorders. Data Sources PubMed, MEDLINE, PsycInfo, Embase, and Web of Science databases were searched through December 10, 2018. The psychiatric keywords used were based on DSM-IV or DSM-5 diagnostic categories. Collected data were analyzed from December 10, 2018, through June 1, 2019. Study Selection Following a preregistered Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) protocol, 2 independent raters reviewed titles, abstracts, and full-text articles. English-language articles comparing monetary delay discounting between participants with psychiatric disorders and controls were included. Data Extraction and Synthesis Hedges g effect sizes were computed and random-effects models were used for all analyses. Heterogeneity statistics, one-study-removed analyses, and publication bias indices were also examined. Main Outcomes and Measures Categorical comparisons of delay discounting between a psychiatric group and a control group. Results The sample included 57 effect sizes from 43 studies across 8 diagnostic categories. Significantly steeper discounting for individuals with a psychiatric disorder compared with controls was observed for major depressive disorder (Hedges g = 0.37; P = .002; k = 7), schizophrenia (Hedges g = 0.46; P = .004; k = 12), borderline personality disorder (Hedges g = 0.60; P < .001; k = 8), bipolar disorder (Hedges g = 0.68; P < .001; k = 4), bulimia nervosa (Hedges g = 0.41; P = .001; k = 4), and binge-eating disorder (Hedges g = 0.34; P = .001; k = 7). In contrast, anorexia nervosa exhibited statistically significantly shallower discounting (Hedges g = –0.30; P < .001; k = 10). Modest evidence of publication bias was indicated by a statistically significant Egger test for schizophrenia and at the aggregate level across studies. Conclusions and Relevance Results of this study appear to provide empirical support for delay discounting as a transdiagnostic process across most of the psychiatric disorders examined; the literature search also revealed limited studies in some disorders, notably posttraumatic stress disorder, which is a priority area for research

    Can the displacemon device test objective collapse models?

    Get PDF
    Testing the limits of the applicability of quantum mechanics will deepen our understanding of the universe and may shed light on the interplay between quantum mechanics and gravity. At present there is a wide range of approaches for such macroscopic tests spanning from matter-wave interferometry of large molecules to precision measurements of heating rates in the motion of micro-scale cantilevers. The “displacemon” is a proposed electromechanical device consisting of a mechanical resonator flux-coupled to a superconducting qubit enabling generation and readout of mechanical quantum states. In the original proposal, the mechanical resonator was a carbon nanotube, containing 106 nucleons. Here, in order to probe quantum mechanics at a more macroscopic scale, we propose using an aluminum mechanical resonator on two larger mass scales, one inspired by the Marshall–Simon–Penrose–Bouwmeester moving-mirror proposal, and one set by the Planck mass. For such a device, we examine the experimental requirements needed to perform a more macroscopic quantum test and thus feasibly detect the decoherence effects predicted by two objective collapse models: Diósi–Penrose and continuous spontaneous localization. Our protocol for testing these two theories takes advantage of the displacemon architecture to create non-Gaussian mechanical states out of equilibrium with their environment and then analyzes the measurement statistics of a superconducting qubit. We find that with improvements to the fabrication and vibration sensitivities of these electromechanical devices, the displacemon device provides a new route to feasibly test decoherence mechanisms beyond standard quantum theory

    Force/position-based modular system for minimally invasive surgery,”

    Get PDF
    Abstract-The limitations of minimally invasive surgery include the inability to sense forces exerted by the instruments on tissue and the limited visual cues available through the endoscope. A modular laparoscopic instrument capable of measuring force and position has been designed to address these limitations. Novel image-based position tracking software has been developed and integrated within a graphical user interface. This modular system is low cost, versatile, and could be used for training, localization of critical features or for guidance during surgical procedures
    corecore