218 research outputs found

    Generalized Lineage-Aware Temporal Windows: Supporting Outer and Anti Joins in Temporal-Probabilistic Databases

    Get PDF
    The result of a temporal-probabilistic (TP) join with negation includes, at each time point, the probability with which a tuple of a positive relation p{\bf p} matches none of the tuples in a negative relation n{\bf n}, for a given join condition θ\theta. TP outer and anti joins thus resemble the characteristics of relational outer and anti joins also in the case when there exist time points at which input tuples from p{\bf p} have non-zero probabilities to be truetrue and input tuples from n{\bf n} have non-zero probabilities to be falsefalse, respectively. For the computation of TP joins with negation, we introduce generalized lineage-aware temporal windows, a mechanism that binds an output interval to the lineages of all the matching valid tuples of each input relation. We group the windows of two TP relations into three disjoint sets based on the way attributes, lineage expressions and intervals are produced. We compute all windows in an incremental manner, and we show that pipelined computations allow for the direct integration of our approach into PostgreSQL. We thereby alleviate the prevalent redundancies in the interval computations of existing approaches, which is proven by an extensive experimental evaluation with real-world datasets

    Snapshot Semantics for Temporal Multiset Relations (Extended Version)

    Full text link
    Snapshot semantics is widely used for evaluating queries over temporal data: temporal relations are seen as sequences of snapshot relations, and queries are evaluated at each snapshot. In this work, we demonstrate that current approaches for snapshot semantics over interval-timestamped multiset relations are subject to two bugs regarding snapshot aggregation and bag difference. We introduce a novel temporal data model based on K-relations that overcomes these bugs and prove it to correctly encode snapshot semantics. Furthermore, we present an efficient implementation of our model as a database middleware and demonstrate experimentally that our approach is competitive with native implementations and significantly outperforms such implementations on queries that involve aggregation.Comment: extended version of PVLDB pape

    Query Results over Ongoing Databases that Remain Valid as Time Passes By (Extended Version)

    Full text link
    Ongoing time point now is used to state that a tuple is valid from the start point onward. For database systems ongoing time points have far-reaching implications since they change continuously as time passes by. State-of-the-art approaches deal with ongoing time points by instantiating them to the reference time. The instantiation yields query results that are only valid at the chosen time and get invalidated as time passes by. We propose a solution that keeps ongoing time points uninstantiated during query processing. We do so by evaluating predicates and functions at all possible reference times. This renders query results independent of a specific reference time and yields results that remain valid as time passes by. As query results, we propose ongoing relations that include a reference time attribute. The value of the reference time attribute is restricted by predicates and functions on ongoing attributes. We describe and evaluate an efficient implementation of ongoing data types and operations in PostgreSQL.Comment: Extended version of ICDE pape

    Lineage-Aware Temporal Windows: Supporting Set Operations in Temporal-Probabilistic Databases

    Get PDF
    In temporal-probabilistic (TP) databases, the combination of the temporal and the probabilistic dimension adds significant overhead to the computation of set operations. Although set queries are guaranteed to yield linearly sized output relations, existing solutions exhibit quadratic runtime complexity. They suffer from redundant interval comparisons and additional joins for the formation of lineage expressions. In this paper, we formally define the semantics of set operations in TP databases and study their properties. For their efficient computation, we introduce the lineage-aware temporal window, a mechanism that directly binds intervals with lineage expressions. We suggest the lineage-aware window advancer (LAWA) for producing the windows of two TP relations in linearithmic time, and we implement all TP set operations based on LAWA. By exploiting the flexibility of lineage-aware temporal windows, we perform direct filtering of irrelevant intervals and finalization of output lineage expressions and thus guarantee that no additional computational cost or buffer space is needed. A series of experiments over both synthetic and real-world datasets show that (a) our approach has predictable performance, depending only on the input size and not on the number of time intervals per fact or their overlap, and that (b) it outperforms state-of-the-art approaches in both temporal and probabilistic databases

    Dynamic Spanning Trees for Connectivity Queries on Fully-dynamic Undirected Graphs (Extended version)

    Full text link
    Answering connectivity queries is fundamental to fully dynamic graphs where edges and vertices are inserted and deleted frequently. Existing work proposes data structures and algorithms with worst-case guarantees. We propose a new data structure, the dynamic tree (D-tree), together with algorithms to construct and maintain it. The D-tree is the first data structure that scales to fully dynamic graphs with millions of vertices and edges and, on average, answers connectivity queries much faster than data structures with worst case guarantees

    Database Technology for Processing Temporal Data

    Get PDF

    Leveraging range joins for the computation of overlap joins

    Get PDF
    Joins are essential and potentially expensive operations in database management systems. When data is associated with time periods, joins commonly include predicates that require pairs of argument tuples to overlap in order to qualify for the result. Our goal is to enable built-in systems support for such joins. In particular, we present an approach where overlap joins are formulated as unions of range joins, which are more general purpose joins compared to overlap joins, i.e., are useful in their own right, and are supported well by B+-trees. The approach is sufficiently flexible that it also supports joins with additional equality predicates, as well as open, closed, and half-open time periods over discrete and continuous domains, thus offering both generality and simplicity, which is important in a system setting. We provide both a stand-alone solution that performs on par with the state-of-the-art and a DBMS embedded solution that is able to exploit standard indexing and clearly outperforms existing DBMS solutions that depend on specialized indexing techniques. We offer both analytical and empirical evaluations of the proposals. The empirical study includes comparisons with pertinent existing proposals and offers detailed insight into the performance characteristics of the proposals

    Speeding Up Reachability Queries in Public Transport Networks Using Graph Partitioning

    Get PDF
    Computing path queries such as the shortest path in public transport networks is challenging because the path costs between nodes change over time. A reachability query from a node at a given start time on such a network retrieves all points of interest (POIs) that are reachable within a given cost budget. Reachability queries are essential building blocks in many applications, for example, group recommendations, ranking spatial queries, or geomarketing. We propose an efficient solution for reachability queries in public transport networks. Currently, there are two options to solve reachability queries. (1) Execute a modified version of Dijkstra’s algorithm that supports time-dependent edge traversal costs; this solution is slow since it must expand edge by edge and does not use an index. (2) Issue a separate path query for each single POI, i.e., a single reachability query requires answering many path queries. None of these solutions scales to large networks with many POIs. We propose a novel and lightweight reachability index. The key idea is to partition the network into cells. Then, in contrast to other approaches, we expand the network cell by cell. Empirical evaluations on synthetic and real-world networks confirm the efficiency and the effectiveness of our index-based reachability query solution

    abcOD: Mining Band Order Dependencies

    Full text link
    We present the design of and a demonstration plan for abcOD, a tool for efficiently discovering approximate band conditional order dependencies (abcODs) from data. abcOD utilizes a dynamic programming algorithm based on a longest monotonic band. Using real datasets, we demonstrate how the discovered abcODs can help users understand ordered data semantics, identify potential data quality problems, and interactively clean the data
    • …
    corecore