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Abstract
Despite the ubiquity of temporal data and considerable research on processing such data, data-
base systems largely remain designed for processing the current state of some modeled reality.
More recently, we have seen an increasing interest in processing historical or temporal data. The
SQL:2011 standard introduced some temporal features, and commercial database management
systems have started to offer temporal functionalities in a step-by-step manner. There has also
been a proposal for a more fundamental and comprehensive solution for sequenced temporal quer-
ies, which allows a tight integration into relational database systems, thereby taking advantage of
existing query optimization and evaluation technologies. New challenges for processing temporal
data arise with multiple dimensions of time and the increasing amounts of data, including time
series data that represent a special kind of temporal data.
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1 Introduction and Background

The storage and querying of temporal data in database management systems (DBMSs)
has been researched for decades, evolving the field and covering multiple aspects of time,
the design of SQL-based query languages, the development of efficient storage and index
structures and algorithms, as well as standardization efforts. The last few years have seen a
renewed interest in studying temporal data management.
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2:2 Database Technology for Processing Temporal Data

To facilitate the formulation of temporal queries, various temporal query languages
have been proposed [5]. The earliest proposals extended SQL with new data types with
associated predicates and functions, e.g., as consolidated in TSQL2 [30]. Though simple,
this approach makes it difficult to be comprehensive and to avoid unintended interactions
among different temporal features. To overcome such problems, more systematic approaches
were proposed that, conceptually, adopt a point-based view of data in combination with
timestamp normalization to transform between an interval-based representation and the
point-based conceptual model. Representative examples include IXSQL [22] that uses fold
and unfold functions, SQL/TP [31] that uses a normalization function, and an approach [1]
that extends normalization to bitemporal relations by means of a split operator. For a
systematic construction of temporal SQL queries from nontemporal SQL queries, so-called
statement modifiers were proposed in ATSQL [6].

To make the processing of temporal queries efficient, various query processing algorithms
have been studied, primarily for temporal aggregations and temporal joins over interval
timestamped relations. Different ways of grouping data along the time dimension yield differ-
ent forms of temporal aggregation: instant, moving-window, and span temporal aggregation.
Unified frameworks to express these forms of temporal aggregation were proposed [21, 4].
Prominent examples of index structures and algorithms for temporal aggregation include
the aggregation tree algorithm [19] and the balanced tree algorithm [24] for instant temporal
aggregation, the SB-tree [32], a disk-based index structure for the incremental maintenance
of instant and moving-window temporal aggregates, and its extension, the MVSB-tree [34],
which additionally supports nontemporal range predicates.

Joins are the second class of operators for which efficient evaluation algorithms have been
studied intensively. An overview and classification of temporal join algorithms is available
in the literature [13]. Recent research results include the timeline index [17, 18], a main
memory index, which was further developed in the context of the lazy endpoint-based interval
join algorithm [27]. The overlap interval partition join [10] partitions the input relations such
that the percentage of matching tuples in corresponding partitions is maximized. This yields
a robust algorithm that is not affected by the temporal distribution of the data. Another
partition-based approach, the disjoint interval partitioning join algorithm [8], ensures that all
tuples in a partition are temporally disjoint to avoid expensive backtracking. The forward-
scan based plane sweep algorithm [7] tries to minimize the number of comparisons and
provides also a parallel evaluation strategy based on a temporal partitioning of the two input
relations.

Recently, we have seen a renewed interest in providing support for temporal data in
database management systems in both academia and industry. This has several reasons:
abundant storage has made long term archival of historical data feasible, and it has been
recognized in many application areas that temporal data holds the potential to reveal valuable
insights that cannot be found by analyzing only a snapshot of the data. This has been
witnessed by the SQL:2011 standard [33, 20], which for the first time provides support
for storing temporal data, and by commercial DBMSs that have started to offer temporal
functionalities [26]. Recently, a comprehensive solution for sequenced queries has been
integrated into the kernel of PostgreSQL [11].

2 Temporal Support in SQL:2011 and Commercial DBMSs

SQL:2011 Standard. The SQL:2011 standard [33, 20] is arguably the first SQL standard
to introduce explicit support for the storage and manipulation of temporal data. A core
extension concerns the possibility to specify one or two time periods associated with tables,
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representing application time and system time, which are commonly known as valid time
and transaction time, respectively [15]. Valid time is the time when a tuple is true in the
modeled reality, whereas transaction time is the time when the tuple was current in the
database. While the valid time is specified by users, the transaction time is maintained by
the DBMS when a tuple is created, updated, or deleted.

SQL:2011 adopts an interval-based data model with tuple timestamping. Time periods
can be added as metadata to the table schema, specifying a start time attribute and an
end time attribute. As start and end time attributes are often already present, a time
period can be added without modifying the table schema. This approach achieves backward
compatibility, keeping old schemas, queries, and tools running.

The behavior of temporal tables in the case of updates and deletions is different for valid
time tables and transaction time tables. Conventional update and delete operations on valid
time tables work in the same way as for nontemporal tables. Additionally, tuples can be
modified over parts of the associated time period, which might cause tuples to be split or cut.
For transaction time tables, the user can only modify nontemporal attributes of the current
tuples. The timestamp attributes are maintained automatically by the system whenever
nontemporal attributes of current tuples are modified.

The SQL:2011 standard also specifies primary and foreign keys. A primary key on a valid
time table can be used to ensure that only one value at a time exists for the nontemporal
key attributes [16]. Foreign keys enforce the existence of certain tuples in a referenced table.
Similarly, primary and foreign key constraints can be specified for transaction time tables.

The support for querying temporal relations is limited to simple range restrictions and
predicates. For valid time tables, the usual SQL syntax can be used to specify constraints on
the start and end time points of the periods. For transaction time tables, three new SQL
extensions are provided to retrieve tuples in a given time range. There is no explicit support
for more advanced operations, such as various forms of temporal aggregations or temporal
joins.

Commercial DBMSs. Following the SQL:2011 standard, major database vendors have
started to offer temporal support in their database management systems [26].

IBM offers the temporal features from SQL:2011 in version 10 of their DB2 database
system [29], supporting both valid time and transaction time tables. Transaction time tables
are implemented by means of a current table and a history table; queries over transaction time
tables are automatically rewritten into queries over one or both of the two tables. The Oracle
DBMS supports temporal features from SQL:2011 as of version 12c. The temporal features
are implemented using the Oracle flashback technology [25] and adopt a syntax that differs
slightly from the SQL standard. PostgreSQL version 9.2 introduces a new range data type
together with associated predicates and functions into the language to support the SQL:2011
standard [28]. For efficient query processing over range predicates, two index structures
have been provided, the Generalized Search Tree (GiST) [14] and the space-partitioned
Generalized Search Tree (SP-GiST) [12]. The Teradata DBMS supports temporal features
from the SQL:2011 standard from version 13.10 onwards [2]. For querying temporal tables,
so-called temporal statement modifiers [6] are used in combination with query rewriting
where temporal queries are translated into equivalent standard SQL queries. In terms of
querying, Teradata is the most advanced database management system, supporting sequenced
aggregation and coalescing. Since 2016, Microsoft’s SQL Server [23] offers limited support
for transaction time tables. For more general temporal query support, user-defined functions
have to be used.

TIME 2018
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3 Native Support for Sequenced Temporal Queries

While the SQL:2011 standard provides limited support for querying temporal data, the tem-
poral alignment framework [11] is the first approach to achieve systematic and comprehensive
support for so-called sequenced temporal queries in relational database engines without
limiting the use of queries with so-called nonsequenced semantics. The approach allows a
tight integration into the database kernel, thus making it possible to leverage existing query
optimization and evaluation strategies for processing temporal queries.

The key idea of the temporal alignment approach is to reduce temporal queries to
nontemporal queries in a two-step process: (1) Adjust the timestamps of the input tuples
such that they are aligned. This yields an intermediate relation, where all tuples that
together contribute to a result tuple have the same timestamp. This intermediate relation
can conceptually be considered as a sequence of snapshots, each of which lasts for one or
more time points. Two interval adjustment operators are needed: a temporal normalizer for
the operators π, ϑ, −, ∩, and ∪, and a temporal aligner for the operators ×, on, d|><|, |><|d, d|><|d,
and B. (2) The corresponding nontemporal operator is applied to the intermediate relations.
By treating the adjusted timestamps as nontemporal, atomic values and adding an equality
constraint over the adjusted timestamps (e.g., as a grouping attribute for aggregation or an
equality predicate in joins), it is ensured that tuples that contribute to the same result tuple
are processed together, yielding the correct result of the original temporal query. Conceptually,
the nontemporal query is applied on each snapshot of the intermediate relations.

The temporal alignment framework features two optional steps. First, it allows the
replication of the original timestamp attribute as a nontemporal attribute before the interval
adjustment step. This is necessary if a subsequent operation needs information about the
original timestamp, e.g., a query predicate over the original timestamp. Second, it allows
attribute values of a tuple to be “scaled” in response to changes to the duration of the tuple’s
timestamp, which may occur during the interval adjustment step.

The temporal alignment approach is systematic and separates interval adjustment from
the evaluation of the operators. This strategy renders it possible to fully leverage the query
optimization and evaluation engine of a DBMS for sequenced temporal query processing.
An implementation of the temporal alignment framework in the kernel of the PostgreSQL
database system is available at tpg.inf.unibz.it [9, 11].

4 Conclusion and Outlook

The processing of temporal data is receiving renewed attention in the database community.
In this work, we provide a brief overview of current results, covering both research results
and commercial database management systems (a more detailed version is available [3]).
Starting with SQL:2011 the SQL standard offers support for storing and updating temporal
data; query support remains limited. These temporal features have been implemented in a
step-by-step fashion in prominent database management systems. In the research field, a
number of new index structures and query algorithms, mainly for aggregation and join, have
been proposed. Further, the first comprehensive framework for sequenced temporal queries
has been implemented in a relational database management system.

Future work in temporal databases points in various directions. While temporal alignment
provides a framework for implementing temporal query support in relational database systems,
open issues remain that require further investigation. First, in order to achieve scalability
to very large datasets in the framework, some operators need substantial performance
improvements. This can be achieved, for example, by providing additional and more targeted

tpg.inf.unibz.it
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temporal alignment primitives that produce smaller intermediate relations. Also, as current
cost estimates are very conservative, it is of interest to study more accurate and optimistic
cost estimates for the query optimizer. This might require the maintenance of statistics
about the temporal distribution of data in the dictionary. Integration of specialized query
algorithms and equivalence rules may also be pertinent.

Second, it is of interest to broaden the applicability of the framework. For instance, it is
of interest to extend the temporal alignment framework to relations with temporal duplicates.
This extension is relevant since duplicates occur in many practical applications, and they are
also permitted in the SQL:2011 standard. Another extension concerns the support for two or
more time dimensions, such as valid time and transaction time. Currently, only valid time is
supported, while the SQL:2011 standard supports both valid time and transaction time. One
problem there is that the adjustment of bitemporal timestamps becomes much more complex.
In time series data, a special type of temporal data, each value is timestamped with a time
point rather than a time period. It is of interest to study how existing technologies from
temporal databases can be adopted for the processing of such data.

Finally, more research in SQL-based temporal query languages is needed to facilitate
the formulation of complex temporal queries; this aspect is not covered in the SQL:2011
standard.
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