

Aalborg Universitet

Database Technology for Processing Temporal Data

Böhlen, Michael Hanspeter; Dignös, Anton; Gamper, Johann; Jensen, Christian Søndergaard

Published in:
25th International Symposium on Temporal Representation and Reasoning, TIME 2018

DOI (link to publication from Publisher):
10.4230/LIPIcs.TIME.2018.2

Creative Commons License
CC BY 3.0

Publication date:
2018

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Böhlen, M. H., Dignös, A., Gamper, J., & Jensen, C. S. (2018). Database Technology for Processing Temporal
Data. In K. Norvag, W. Penczek, & N. Alechina (Eds.), 25th International Symposium on Temporal
Representation and Reasoning, TIME 2018 (Vol. 120). [2] Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik
GmbH. Leibniz International Proceedings in Informatics Vol. 120 https://doi.org/10.4230/LIPIcs.TIME.2018.2

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 ? Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 ? You may not further distribute the material or use it for any profit-making activity or commercial gain
 ? You may freely distribute the URL identifying the publication in the public portal ?

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

Downloaded from vbn.aau.dk on: November 24, 2020

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by VBN

https://core.ac.uk/display/304611987?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.4230/LIPIcs.TIME.2018.2
https://vbn.aau.dk/en/publications/94b7579e-40c4-4b27-a20d-de4be45b83c3
https://doi.org/10.4230/LIPIcs.TIME.2018.2

Database Technology for Processing Temporal
Data
Michael H. Böhlen
University of Zurich, Switzerland
boehlen@ifi.uzh.ch

https://orcid.org/0000-0003-3694-9026

Anton Dignös
Free University of Bozen-Bolzano, Italy
dignoes@inf.unibz.it

https://orcid.org/0000-0002-7621-967X

Johann Gamper
Free University of Bozen-Bolzano, Italy
gamper@inf.unibz.it

https://orcid.org/0000-0002-7128-507X

Christian S. Jensen
Aalborg University, Denmark
csj@cs.aau.dk

https://orcid.org/0000-0002-9697-7670

Abstract
Despite the ubiquity of temporal data and considerable research on processing such data, data-
base systems largely remain designed for processing the current state of some modeled reality.
More recently, we have seen an increasing interest in processing historical or temporal data. The
SQL:2011 standard introduced some temporal features, and commercial database management
systems have started to offer temporal functionalities in a step-by-step manner. There has also
been a proposal for a more fundamental and comprehensive solution for sequenced temporal quer-
ies, which allows a tight integration into relational database systems, thereby taking advantage of
existing query optimization and evaluation technologies. New challenges for processing temporal
data arise with multiple dimensions of time and the increasing amounts of data, including time
series data that represent a special kind of temporal data.

2012 ACM Subject Classification Information systems → Data management systems, Informa-
tion systems → Temporal data

Keywords and phrases Temporal databases, temporal query processing, sequenced semantics,
SQL

Digital Object Identifier 10.4230/LIPIcs.TIME.2018.2

Category Invited Paper

1 Introduction and Background

The storage and querying of temporal data in database management systems (DBMSs)
has been researched for decades, evolving the field and covering multiple aspects of time,
the design of SQL-based query languages, the development of efficient storage and index
structures and algorithms, as well as standardization efforts. The last few years have seen a
renewed interest in studying temporal data management.

© Michael H. Böhlen, Anton Dignös, Johann Gamper, and Christian S. Jensen;
licensed under Creative Commons License CC-BY

25th International Symposium on Temporal Representation and Reasoning (TIME 2018).
Editors: Natasha Alechina, Kjetil Nørvåg, and Wojciech Penczek; Article No. 2; pp. 2:1–2:7

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:boehlen@ifi.uzh.ch
https://orcid.org/0000-0003-3694-9026
mailto:dignoes@inf.unibz.it
https://orcid.org/0000-0002-7621-967X
mailto:gamper@inf.unibz.it
https://orcid.org/0000-0002-7128-507X
mailto:csj@cs.aau.dk
https://orcid.org/0000-0002-9697-7670
https://doi.org/10.4230/LIPIcs.TIME.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2 Database Technology for Processing Temporal Data

To facilitate the formulation of temporal queries, various temporal query languages
have been proposed [5]. The earliest proposals extended SQL with new data types with
associated predicates and functions, e.g., as consolidated in TSQL2 [30]. Though simple,
this approach makes it difficult to be comprehensive and to avoid unintended interactions
among different temporal features. To overcome such problems, more systematic approaches
were proposed that, conceptually, adopt a point-based view of data in combination with
timestamp normalization to transform between an interval-based representation and the
point-based conceptual model. Representative examples include IXSQL [22] that uses fold
and unfold functions, SQL/TP [31] that uses a normalization function, and an approach [1]
that extends normalization to bitemporal relations by means of a split operator. For a
systematic construction of temporal SQL queries from nontemporal SQL queries, so-called
statement modifiers were proposed in ATSQL [6].

To make the processing of temporal queries efficient, various query processing algorithms
have been studied, primarily for temporal aggregations and temporal joins over interval
timestamped relations. Different ways of grouping data along the time dimension yield differ-
ent forms of temporal aggregation: instant, moving-window, and span temporal aggregation.
Unified frameworks to express these forms of temporal aggregation were proposed [21, 4].
Prominent examples of index structures and algorithms for temporal aggregation include
the aggregation tree algorithm [19] and the balanced tree algorithm [24] for instant temporal
aggregation, the SB-tree [32], a disk-based index structure for the incremental maintenance
of instant and moving-window temporal aggregates, and its extension, the MVSB-tree [34],
which additionally supports nontemporal range predicates.

Joins are the second class of operators for which efficient evaluation algorithms have been
studied intensively. An overview and classification of temporal join algorithms is available
in the literature [13]. Recent research results include the timeline index [17, 18], a main
memory index, which was further developed in the context of the lazy endpoint-based interval
join algorithm [27]. The overlap interval partition join [10] partitions the input relations such
that the percentage of matching tuples in corresponding partitions is maximized. This yields
a robust algorithm that is not affected by the temporal distribution of the data. Another
partition-based approach, the disjoint interval partitioning join algorithm [8], ensures that all
tuples in a partition are temporally disjoint to avoid expensive backtracking. The forward-
scan based plane sweep algorithm [7] tries to minimize the number of comparisons and
provides also a parallel evaluation strategy based on a temporal partitioning of the two input
relations.

Recently, we have seen a renewed interest in providing support for temporal data in
database management systems in both academia and industry. This has several reasons:
abundant storage has made long term archival of historical data feasible, and it has been
recognized in many application areas that temporal data holds the potential to reveal valuable
insights that cannot be found by analyzing only a snapshot of the data. This has been
witnessed by the SQL:2011 standard [33, 20], which for the first time provides support
for storing temporal data, and by commercial DBMSs that have started to offer temporal
functionalities [26]. Recently, a comprehensive solution for sequenced queries has been
integrated into the kernel of PostgreSQL [11].

2 Temporal Support in SQL:2011 and Commercial DBMSs

SQL:2011 Standard. The SQL:2011 standard [33, 20] is arguably the first SQL standard
to introduce explicit support for the storage and manipulation of temporal data. A core
extension concerns the possibility to specify one or two time periods associated with tables,

M.H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen 2:3

representing application time and system time, which are commonly known as valid time
and transaction time, respectively [15]. Valid time is the time when a tuple is true in the
modeled reality, whereas transaction time is the time when the tuple was current in the
database. While the valid time is specified by users, the transaction time is maintained by
the DBMS when a tuple is created, updated, or deleted.

SQL:2011 adopts an interval-based data model with tuple timestamping. Time periods
can be added as metadata to the table schema, specifying a start time attribute and an
end time attribute. As start and end time attributes are often already present, a time
period can be added without modifying the table schema. This approach achieves backward
compatibility, keeping old schemas, queries, and tools running.

The behavior of temporal tables in the case of updates and deletions is different for valid
time tables and transaction time tables. Conventional update and delete operations on valid
time tables work in the same way as for nontemporal tables. Additionally, tuples can be
modified over parts of the associated time period, which might cause tuples to be split or cut.
For transaction time tables, the user can only modify nontemporal attributes of the current
tuples. The timestamp attributes are maintained automatically by the system whenever
nontemporal attributes of current tuples are modified.

The SQL:2011 standard also specifies primary and foreign keys. A primary key on a valid
time table can be used to ensure that only one value at a time exists for the nontemporal
key attributes [16]. Foreign keys enforce the existence of certain tuples in a referenced table.
Similarly, primary and foreign key constraints can be specified for transaction time tables.

The support for querying temporal relations is limited to simple range restrictions and
predicates. For valid time tables, the usual SQL syntax can be used to specify constraints on
the start and end time points of the periods. For transaction time tables, three new SQL
extensions are provided to retrieve tuples in a given time range. There is no explicit support
for more advanced operations, such as various forms of temporal aggregations or temporal
joins.

Commercial DBMSs. Following the SQL:2011 standard, major database vendors have
started to offer temporal support in their database management systems [26].

IBM offers the temporal features from SQL:2011 in version 10 of their DB2 database
system [29], supporting both valid time and transaction time tables. Transaction time tables
are implemented by means of a current table and a history table; queries over transaction time
tables are automatically rewritten into queries over one or both of the two tables. The Oracle
DBMS supports temporal features from SQL:2011 as of version 12c. The temporal features
are implemented using the Oracle flashback technology [25] and adopt a syntax that differs
slightly from the SQL standard. PostgreSQL version 9.2 introduces a new range data type
together with associated predicates and functions into the language to support the SQL:2011
standard [28]. For efficient query processing over range predicates, two index structures
have been provided, the Generalized Search Tree (GiST) [14] and the space-partitioned
Generalized Search Tree (SP-GiST) [12]. The Teradata DBMS supports temporal features
from the SQL:2011 standard from version 13.10 onwards [2]. For querying temporal tables,
so-called temporal statement modifiers [6] are used in combination with query rewriting
where temporal queries are translated into equivalent standard SQL queries. In terms of
querying, Teradata is the most advanced database management system, supporting sequenced
aggregation and coalescing. Since 2016, Microsoft’s SQL Server [23] offers limited support
for transaction time tables. For more general temporal query support, user-defined functions
have to be used.

TIME 2018

2:4 Database Technology for Processing Temporal Data

3 Native Support for Sequenced Temporal Queries

While the SQL:2011 standard provides limited support for querying temporal data, the tem-
poral alignment framework [11] is the first approach to achieve systematic and comprehensive
support for so-called sequenced temporal queries in relational database engines without
limiting the use of queries with so-called nonsequenced semantics. The approach allows a
tight integration into the database kernel, thus making it possible to leverage existing query
optimization and evaluation strategies for processing temporal queries.

The key idea of the temporal alignment approach is to reduce temporal queries to
nontemporal queries in a two-step process: (1) Adjust the timestamps of the input tuples
such that they are aligned. This yields an intermediate relation, where all tuples that
together contribute to a result tuple have the same timestamp. This intermediate relation
can conceptually be considered as a sequence of snapshots, each of which lasts for one or
more time points. Two interval adjustment operators are needed: a temporal normalizer for
the operators π, ϑ, −, ∩, and ∪, and a temporal aligner for the operators ×, on, d|><|, |><|d, d|><|d,
and B. (2) The corresponding nontemporal operator is applied to the intermediate relations.
By treating the adjusted timestamps as nontemporal, atomic values and adding an equality
constraint over the adjusted timestamps (e.g., as a grouping attribute for aggregation or an
equality predicate in joins), it is ensured that tuples that contribute to the same result tuple
are processed together, yielding the correct result of the original temporal query. Conceptually,
the nontemporal query is applied on each snapshot of the intermediate relations.

The temporal alignment framework features two optional steps. First, it allows the
replication of the original timestamp attribute as a nontemporal attribute before the interval
adjustment step. This is necessary if a subsequent operation needs information about the
original timestamp, e.g., a query predicate over the original timestamp. Second, it allows
attribute values of a tuple to be “scaled” in response to changes to the duration of the tuple’s
timestamp, which may occur during the interval adjustment step.

The temporal alignment approach is systematic and separates interval adjustment from
the evaluation of the operators. This strategy renders it possible to fully leverage the query
optimization and evaluation engine of a DBMS for sequenced temporal query processing.
An implementation of the temporal alignment framework in the kernel of the PostgreSQL
database system is available at tpg.inf.unibz.it [9, 11].

4 Conclusion and Outlook

The processing of temporal data is receiving renewed attention in the database community.
In this work, we provide a brief overview of current results, covering both research results
and commercial database management systems (a more detailed version is available [3]).
Starting with SQL:2011 the SQL standard offers support for storing and updating temporal
data; query support remains limited. These temporal features have been implemented in a
step-by-step fashion in prominent database management systems. In the research field, a
number of new index structures and query algorithms, mainly for aggregation and join, have
been proposed. Further, the first comprehensive framework for sequenced temporal queries
has been implemented in a relational database management system.

Future work in temporal databases points in various directions. While temporal alignment
provides a framework for implementing temporal query support in relational database systems,
open issues remain that require further investigation. First, in order to achieve scalability
to very large datasets in the framework, some operators need substantial performance
improvements. This can be achieved, for example, by providing additional and more targeted

tpg.inf.unibz.it

M.H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen 2:5

temporal alignment primitives that produce smaller intermediate relations. Also, as current
cost estimates are very conservative, it is of interest to study more accurate and optimistic
cost estimates for the query optimizer. This might require the maintenance of statistics
about the temporal distribution of data in the dictionary. Integration of specialized query
algorithms and equivalence rules may also be pertinent.

Second, it is of interest to broaden the applicability of the framework. For instance, it is
of interest to extend the temporal alignment framework to relations with temporal duplicates.
This extension is relevant since duplicates occur in many practical applications, and they are
also permitted in the SQL:2011 standard. Another extension concerns the support for two or
more time dimensions, such as valid time and transaction time. Currently, only valid time is
supported, while the SQL:2011 standard supports both valid time and transaction time. One
problem there is that the adjustment of bitemporal timestamps becomes much more complex.
In time series data, a special type of temporal data, each value is timestamped with a time
point rather than a time period. It is of interest to study how existing technologies from
temporal databases can be adopted for the processing of such data.

Finally, more research in SQL-based temporal query languages is needed to facilitate
the formulation of complex temporal queries; this aspect is not covered in the SQL:2011
standard.

References

1 Mikkel Agesen, Michael H. Böhlen, Lasse Poulsen, and Kristian Torp. A split operator for
now-relative bitemporal databases. In Proceedings of the 17th International Conference on
Data Engineering, ICDE 2001, pages 41–50, 2001. doi:10.1109/ICDE.2001.914812.

2 Mohammed Al-Kateb, Ahmad Ghazal, Alain Crolotte, Ramesh Bhashyam, Jaiprakash Chi-
manchode, and Sai Pavan Pakala. Temporal query processing in teradata. In Proceedings of
the 16th International Conference on Extending Database Technology, EDBT 2013, pages
573–578, 2013. doi:10.1145/2452376.2452443.

3 Michael H. Böhlen, Anton Dignös, Johann Gamper, and Christian S. Jensen. Temporal
data management - an overview. In Esteban Zimányi, editor, Business Intelligence and
Big Data - 7th European Summer School, eBISS 2017, Bruxelles, Belgium, July 2-7, 2017,
Tutorial Lectures, volume 324 of Lecture Notes in Business Information Processing, pages
51–83. Springer, 2017. doi:10.1007/978-3-319-96655-7_3.

4 Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Multi-dimensional aggrega-
tion for temporal data. In Proceedings of the 10th International Conference on Extending
Database Technology, EDBT 2006, volume 3896 of Lecture Notes in Computer Science,
pages 257–275. Springer, 2006. doi:10.1007/11687238_18.

5 Michael H. Böhlen and Christian S. Jensen. Temporal data model and query language
concepts. In Encyclopedia of Information Systems, pages 437–453. Elsevier, 2003. doi:
10.1016/B0-12-227240-4/00184-2.

6 Michael H. Böhlen, Christian S. Jensen, and Richard T. Snodgrass. Temporal statement
modifiers. ACM Trans. Database Syst., 25(4):407–456, 2000. URL: http://portal.acm.
org/citation.cfm?id=377674.377665.

7 Panagiotis Bouros and Nikos Mamoulis. A forward scan based plane sweep algorithm for
parallel interval joins. PVLDB, 10(11):1346–1357, 2017. URL: http://www.vldb.org/
pvldb/vol10/p1346-bouros.pdf, doi:10.14778/3137628.3137644.

8 Francesco Cafagna and Michael H. Böhlen. Disjoint interval partitioning. The VLDB J.,
26(3):447–466, 2017. doi:10.1007/s00778-017-0456-7.

TIME 2018

http://dx.doi.org/10.1109/ICDE.2001.914812
http://dx.doi.org/10.1145/2452376.2452443
http://dx.doi.org/10.1007/978-3-319-96655-7_3
http://dx.doi.org/10.1007/11687238_18
http://dx.doi.org/10.1016/B0-12-227240-4/00184-2
http://dx.doi.org/10.1016/B0-12-227240-4/00184-2
http://portal.acm.org/citation.cfm?id=377674.377665
http://portal.acm.org/citation.cfm?id=377674.377665
http://www.vldb.org/pvldb/vol10/p1346-bouros.pdf
http://www.vldb.org/pvldb/vol10/p1346-bouros.pdf
http://dx.doi.org/10.14778/3137628.3137644
http://dx.doi.org/10.1007/s00778-017-0456-7

2:6 Database Technology for Processing Temporal Data

9 Anton Dignös, Michael H. Böhlen, and Johann Gamper. Temporal alignment. In Proceed-
ings of the ACM SIGMOD International Conference on Management of Data, SIGMOD
2012, pages 433–444, 2012. doi:10.1145/2213836.2213886.

10 Anton Dignös, Michael H. Böhlen, and Johann Gamper. Overlap interval partition join.
In Proceedings of the ACM SIGMOD International Conference on Management of Data,
SIGMOD 2014, pages 1459–1470, 2014. doi:10.1145/2588555.2612175.

11 Anton Dignös, Michael H. Böhlen, Johann Gamper, and Christian S. Jensen. Extending the
kernel of a relational DBMS with comprehensive support for sequenced temporal queries.
ACM Trans. Database Syst., 41(4):26:1–26:46, 2016. doi:10.1145/2967608.

12 Mohamed Y. Eltabakh, Ramy Eltarras, and Walid G. Aref. Space-partitioning trees in
postgresql: Realization and performance. In Ling Liu, Andreas Reuter, Kyu-Young Whang,
and Jianjun Zhang, editors, Proceedings of the 22nd International Conference on Data
Engineering, ICDE 2006, 3-8 April 2006, Atlanta, GA, USA, page 100. IEEE Computer
Society, 2006. doi:10.1109/ICDE.2006.146.

13 Dengfeng Gao, Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. Join
operations in temporal databases. The VLDB J., 14(1):2–29, 2005. doi:10.1007/
s00778-003-0111-3.

14 Joseph M. Hellerstein. Generalized search tree. In Ling Liu and M. Tamer Özsu, editors,
Encyclopedia of Database Systems, pages 1222–1224. Springer US, 2009. doi:10.1007/
978-0-387-39940-9_743.

15 Christian S. Jensen, Curtis E. Dyreson, Michael H. Böhlen, James Clifford, Ramez Elmasri,
Shashi K. Gadia, Fabio Grandi, Patrick J. Hayes, Sushil Jajodia, Wolfgang Käfer, Nick
Kline, Nikos A. Lorentzos, Yannis G. Mitsopoulos, Angelo Montanari, Daniel A. Nonen,
Elisa Peressi, Barbara Pernici, John F. Roddick, Nandlal L. Sarda, Maria Rita Scalas, Arie
Segev, Richard T. Snodgrass, Michael D. Soo, Abdullah Uz Tansel, Paolo Tiberio, and Gio
Wiederhold. The consensus glossary of temporal database concepts. In Temporal Databases,
Dagstuhl, pages 367–405, 1997. doi:10.1007/BFb0053710.

16 Christian S. Jensen, Richard T. Snodgrass, and Michael D. Soo. Extending existing de-
pendency theory to temporal databases. IEEE Trans. Knowl. Data Eng., 8(4):563–582,
1996. doi:10.1109/69.536250.

17 Martin Kaufmann, Amin Amiri Manjili, Panagiotis Vagenas, Peter M. Fischer, Donald
Kossmann, Franz Färber, and Norman May. Timeline index: a unified data structure for
processing queries on temporal data in SAP HANA. In Proceedings of the ACM SIGMOD
International Conference on Management of Data, SIGMOD 2013, pages 1173–1184, 2013.
doi:10.1145/2463676.2465293.

18 Martin Kaufmann, Panagiotis Vagenas, Peter M. Fischer, Donald Kossmann, and
Franz Färber. Comprehensive and interactive temporal query processing with SAP
HANA. PVLDB, 6(12):1210–1213, 2013. URL: http://www.vldb.org/pvldb/vol6/
p1210-kaufmann.pdf, doi:10.14778/2536274.2536278.

19 Nick Kline and Richard T. Snodgrass. Computing temporal aggregates. In Proceedings of
the 11th International Conference on Data Engineering, ICDE 1995, pages 222–231, 1995.
doi:10.1109/ICDE.1995.380389.

20 Krishna G. Kulkarni and Jan-Eike Michels. Temporal features in SQL: 2011. SIGMOD
Record, 41(3):34–43, 2012. doi:10.1145/2380776.2380786.

21 Inés Fernando Vega López, Richard T. Snodgrass, and Bongki Moon. Spatiotemporal
aggregate computation: a survey. IEEE Trans. Knowl. Data Eng., 17(2):271–286, 2005.
doi:10.1109/TKDE.2005.34.

22 Nikos A. Lorentzos and Yannis G. Mitsopoulos. SQL extension for interval data. IEEE
Trans. Knowl. Data Eng., 9(3):480–499, 1997. doi:10.1109/69.599935.

http://dx.doi.org/10.1145/2213836.2213886
http://dx.doi.org/10.1145/2588555.2612175
http://dx.doi.org/10.1145/2967608
http://dx.doi.org/10.1109/ICDE.2006.146
http://dx.doi.org/10.1007/s00778-003-0111-3
http://dx.doi.org/10.1007/s00778-003-0111-3
http://dx.doi.org/10.1007/978-0-387-39940-9_743
http://dx.doi.org/10.1007/978-0-387-39940-9_743
http://dx.doi.org/10.1007/BFb0053710
http://dx.doi.org/10.1109/69.536250
http://dx.doi.org/10.1145/2463676.2465293
http://www.vldb.org/pvldb/vol6/p1210-kaufmann.pdf
http://www.vldb.org/pvldb/vol6/p1210-kaufmann.pdf
http://dx.doi.org/10.14778/2536274.2536278
http://dx.doi.org/10.1109/ICDE.1995.380389
http://dx.doi.org/10.1145/2380776.2380786
http://dx.doi.org/10.1109/TKDE.2005.34
http://dx.doi.org/10.1109/69.599935

M.H. Böhlen, A. Dignös, J. Gamper, and C. S. Jensen 2:7

23 Microsoft. SQL Server 2016 - temporal tables. https://docs.microsoft.com/en-us/
sql/relational-databases/tables/temporal-tables, 2016.

24 Bongki Moon, Inés Fernando Vega López, and Vijaykumar Immanuel. Efficient algorithms
for large-scale temporal aggregation. IEEE Trans. Knowl. Data Eng., 15(3):744–759, 2003.
doi:10.1109/TKDE.2003.1198403.

25 Oracle. Database development guide - temporal validity support. https://docs.oracle.
com/database/121/ADFNS/adfns_design.htm#ADFNS967, 2016.

26 Dusan Petkovic. Temporal data in relational database systems: A comparison. In
New Advances in Information Systems and Technologies - Volume 1, volume 444 of Ad-
vances in Intelligent Systems and Computing, pages 13–23. Springer, 2016. doi:10.1007/
978-3-319-31232-3_2.

27 Danila Piatov, Sven Helmer, and Anton Dignös. An interval join optimized for modern
hardware. In Proceedings of the 32nd International Conference on Data Engineering, ICDE
2016, pages 1098–1109, 2016. doi:10.1109/ICDE.2016.7498316.

28 PostgreSQL Global Development Group. Documentation manual PostgreSQL - range types.
http://www.postgresql.org/docs/9.2/static/rangetypes.html, 2012.

29 Cynthia Saracco, Matthias Nicola, and Lenisha Gandhi. A matter of time: Temporal
data management in DB2 10. http://www.ibm.com/developerworks/data/library/
techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf, 2012.

30 Richard T. Snodgrass, editor. The TSQL2 Temporal Query Language. Kluwer, 1995.
31 David Toman. Point vs. interval-based query languages for temporal databases. In Proceed-

ings of the 15th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems, PODS 1996, pages 58–67, 1996. doi:10.1145/237661.237676.

32 Jun Yang and Jennifer Widom. Incremental computation and maintenance of temporal
aggregates. The VLDB J., 12(3):262–283, 2003. doi:10.1007/s00778-003-0107-z.

33 Fred Zemke. Whats new in SQL: 2011. SIGMOD Record, 41(1):67–73, 2012. doi:10.1145/
2206869.2206883.

34 Donghui Zhang, Alexander Markowetz, Vassilis J. Tsotras, Dimitrios Gunopulos, and
Bernhard Seeger. Efficient computation of temporal aggregates with range predicates. In
Proceedings of the 20th ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, PODS 2001, 2001. doi:10.1145/375551.375600.

TIME 2018

https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
https://docs.microsoft.com/en-us/sql/relational-databases/tables/temporal-tables
http://dx.doi.org/10.1109/TKDE.2003.1198403
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
https://docs.oracle.com/database/121/ADFNS/adfns_design.htm#ADFNS967
http://dx.doi.org/10.1007/978-3-319-31232-3_2
http://dx.doi.org/10.1007/978-3-319-31232-3_2
http://dx.doi.org/10.1109/ICDE.2016.7498316
http://www.postgresql.org/docs/9.2/static/rangetypes.html
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://www.ibm.com/developerworks/data/library/techarticle/dm-1204db2temporaldata/dm-1204db2temporaldata-pdf.pdf
http://dx.doi.org/10.1145/237661.237676
http://dx.doi.org/10.1007/s00778-003-0107-z
http://dx.doi.org/10.1145/2206869.2206883
http://dx.doi.org/10.1145/2206869.2206883
http://dx.doi.org/10.1145/375551.375600

	Introduction and Background
	Temporal Support in SQL:2011 and Commercial DBMSs
	Native Support for Sequenced Temporal Queries
	Conclusion and Outlook

