

Aalborg Universitet

Speeding Up Reachability Queries in Public Transport Networks Using Graph
Partitioning

Tesfaye, Bezaye; Augsten, Nikolaus; Pawlik, Mateusz; Böhlen, Michael H.; Jensen, Christian
S.
Published in:
Information Systems Frontiers

DOI (link to publication from Publisher):
10.1007/s10796-021-10164-2

Creative Commons License
Unspecified

Publication date:
2022

Document Version
Publisher's PDF, also known as Version of record

Link to publication from Aalborg University

Citation for published version (APA):
Tesfaye, B., Augsten, N., Pawlik, M., Böhlen, M. H., & Jensen, C. S. (2022). Speeding Up Reachability Queries
in Public Transport Networks Using Graph Partitioning. Information Systems Frontiers, 24(1), 11–29.
https://doi.org/10.1007/s10796-021-10164-2

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 - Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 - You may not further distribute the material or use it for any profit-making activity or commercial gain
 - You may freely distribute the URL identifying the publication in the public portal -

Take down policy
If you believe that this document breaches copyright please contact us at vbn@aub.aau.dk providing details, and we will remove access to
the work immediately and investigate your claim.

https://doi.org/10.1007/s10796-021-10164-2
https://vbn.aau.dk/en/publications/ef9a5d8f-fb5f-46e5-abe6-b01f3530f312
https://doi.org/10.1007/s10796-021-10164-2

https://doi.org/10.1007/s10796-021-10164-2

Speeding Up Reachability Queries in Public Transport Networks
Using Graph Partitioning

Bezaye Tesfaye1 ·Nikolaus Augsten1 ·Mateusz Pawlik1 ·Michael H. Böhlen2 · Christian S. Jensen3

Accepted: 17 June 2021
© The Author(s) 2021

Abstract
Computing path queries such as the shortest path in public transport networks is challenging because the path costs between
nodes change over time. A reachability query from a node at a given start time on such a network retrieves all points of
interest (POIs) that are reachable within a given cost budget. Reachability queries are essential building blocks in many
applications, for example, group recommendations, ranking spatial queries, or geomarketing. We propose an efficient
solution for reachability queries in public transport networks. Currently, there are two options to solve reachability queries.
(1) Execute a modified version of Dijkstra’s algorithm that supports time-dependent edge traversal costs; this solution is
slow since it must expand edge by edge and does not use an index. (2) Issue a separate path query for each single POI, i.e., a
single reachability query requires answering many path queries. None of these solutions scales to large networks with many
POIs. We propose a novel and lightweight reachability index. The key idea is to partition the network into cells. Then, in
contrast to other approaches, we expand the network cell by cell. Empirical evaluations on synthetic and real-world networks
confirm the efficiency and the effectiveness of our index-based reachability query solution.

Keywords Reachability queries · Public transport networks · Temporal graphs · Spatial network databases

1 Introduction

We study the problem of scalable and efficient reachabil-
ity querying in public transport networks. A reachability
query retrieves all points of interest (POIs) reachable from
a given query node at a specific start time within a given

� Bezaye Tesfaye
bbelayneh@cs.sbg.ac.at

Nikolaus Augsten
augsten@cs.sbg.ac.at

Mateusz Pawlik
mpawlik@cs.sbg.ac.at

Michael H. Böhlen
boehlen@ifi.uzh.ch

Christian S. Jensen
csj@cs.aau.dk

1 University of Salzburg, Salzburg, Austria

2 University of Zurich, Zürich, Switzerland

3 Aalborg University, Aalborg, Denmark

time budget. The start time is required since the reacha-
bility result changes over time. Interesting applications of
reachability queries include group recommendations, rank-
ing spatial queries, urban planning, and geomarketing. We
present two examples.

Consider a platform that recommends events to a group
of people such that the group members like to attend the
event together (Amer-Yahia et al., 2009; Jameson & Smyth,
2007). Group members are query nodes and events are POIs.
When the group is given, the events must be evaluated
by various criteria to optimize the benefit to the group.
One important aspect is the location of the event relative
to the group members. The start time and the travel time
budget to reach an event may differ for each member.
Events too far away are unlikely to be successful. A single
recommendation comprises multiple reachability queries,
one for each group member.

Another example is a real estate website that ranks
properties (query nodes) according to user preferences. The
users may customize reachability criteria for different POIs
(e.g., school, working place, train station). Thereby, the time
budget for individual types of POIs may vary: a user may
be willing to commute to work for an hour, while a school
must be nearby. Ranking the results of a single user query

/ Published online: 14 August 2021

Information Systems Frontiers (2022) 24:11–29

http://crossmark.crossref.org/dialog/?doi=10.1007/s10796-021-10164-2&domain=pdf
http://orcid.org/0000-0002-3194-6830
mailto: bbelayneh@cs.sbg.ac.at
mailto: augsten@cs.sbg.ac.at
mailto: mpawlik@cs.sbg.ac.at
mailto: boehlen@ifi.uzh.ch
mailto: csj@cs.aau.dk

requires the computation of multiple reachability queries:
one for each property and parameter setting.

To support such applications, reachability queries must
be computed efficiently. Achieving this goal in public
transport networks is tricky since the shortest path between
two nodes depends on the start time, and the time to
traverse a path may vary greatly across time. In a public
transport network, stations are nodes, and connections
between stations are edges between nodes. An edge can
only be traversed at specific points in time as given by
a schedule. Therefore, computing an index for public
transport networks is more complex than for networks with
constant edge-traversal costs or networks in which an edge
can be traversed at any time (like pedestrian networks or
road networks).

Example 1 Consider, the public transport network in
Fig. 1a. The nodes v1, v2, . . . , v12 represent stations, and the
directed edges represent connections between the stations.
Each connection has a pair (td , ta) of departure and arrival
times. For example, there is a connection leaving v4 at
time 10 and arriving at v3 at time 11. The traversal cost
between nodes is expressed in terms of time units. The cost
of traversing the edge (v4, v3) at time 9 is 2, since we have
a waiting time in addition to the edge traversal time. The
shortest path from v10 to v11 at start time ts = 9 has cost 2
(edge (v10, v11)), while at ts = 10, the cost of the shortest
path is 3 (edges (v10, v12), (v12, v11)). At start time ts = 9,

the nodes {v8, v9, v11} are reachable from v10 with budget
Δt = 2; at ts = 10 with the same budget, we can reach the
nodes {v9, v12}.

The state of the art in answering reachability queries
in public transport networks includes two approaches.
The first is based on a temporal version of Dijkstra’s
algorithm (Dijkstra, 1959) that expands in the network until
the budget is exhausted. Algorithms following this approach
compute a so-called isochrone (the reachable region) and
intersect it with the set of POIs (Bauer et al., 2008; Gamper
et al., 2011). Since all edges in the isochrone must be
expanded, these algorithms do not scale to large networks.
The second approach translates a single reachability query
into a set of path queries (e.g., shortest path or earliest-
arrival path (Seufert et al., 2013; Wang et al., 2015; Wu
et al., 2016)), one for each POI. Path queries require heavy
index structures and do not scale to large numbers of POIs.

We propose an index-based technique for reachability
queries in public transport networks. Instead of expanding
edge by edge, in a precomputation step, we partition the
network into cells and construct a novel reachability index.
At query time, the index is used to expand cell by cell.
Each cell covers a region of the network and all POIs in
that region. The precomputation effort for a specific cell
is independent of the other cells such that the index scales
to large networks. The index is small, even smaller than
the original graph for some inputs. This paper extends

Fig. 1 Temporal graph of public transport network and reachability index

12 Inf Syst Front (2022) 24:11–29

our preliminary results in Tesfaye et al. (2020) with an
evaluation of different partitioning techniques. The idea of
partitioning a public transport network to index reachability
queries was first published in Tesfaye and Augsten (2016),
but the proposed index is not exact and the quality of the
approximation was not evaluated.

The rest of the paper is structured as follows. In Section 2,
we define the problem, and we give an overview of our
solution in Section 3. We introduce our reachability index
in Section 4 and discuss query processing using the index
in Section 5. In Section 6, we review related work. In
Section 7 we investigate experimentally the performance of
our solution. We conclude in Section 8.

2 Preliminaries and ProblemDefinition

In a public transport network, stations are nodes and
connections are edges. A connection has a departure time
td and an arrival time ta , td < ta . We assume periodic
schedules as is typically the case in public transport
networks, e.g., schedules repeat daily or weekly.

A temporal graph G = (V , E, c) is a directed graph
with vertices V , edges E ⊆ V × V , and a time-dependent
cost function c(e, t), c : E × R → R≥0 that captures
the time cost of traversing edge e starting at time t . We
represent public transport networks as temporal graphs with
a specific cost function, which we derive from the schedule.
Each station is a node in the graph, and there is an edge
from node u to node v iff there is a direct connection (i.e.,
there are no intermediate stops) from the station of u to the
station of v. The cost function is periodic with periodΠ , i.e.,
c(e, t) = c(e, t + Π) and piecewise linear; all linear pieces
have slope k = −1; the cost function is not continuous; all
discontinuities are at departure times of some connections.
The time cost of taking a connection si = (td , ta) to traverse
edge e in the period (td −Π, td] is σ(si, t) = ta − t . If there
are multiple connections Se = {s1, s2, . . . , si} on edge e, the
cost of traversing edge e departing at time t is the minimum
cost over all the individual connections at time t , c(e, t) =
mins∈Se {σ(s, t)}. Our cost function is consistent, i.e., for
any edge e ∈ E and all start times t1 ≤ t2: t1 + c(e, t1) ≤
t2+c(e, t2). Intuitively, in a consistent cost function, it never
pays off to skip a connection in order to wait for a later
and faster connection. Consistency is required for the use
of Dijkstra’s shortest-path algorithm (Kaufmann & Smith,
1993).

Example 2 Consider an edge e with three connections
s1 = (2, 5), s2 = (3, 4), s3 = (4, 6) and a period of
Π = 6. Figure 2 shows the time costs (y-axis) of taking
the individual connections to traverse edge e starting at
time t (x-axis): σ(s1, t) = 5 − t , t ∈ (−4, 2] (blue),

Fig. 2 Example of cost function c(e, t) of traversing edge e starting at
time t derived from three connections s1, s2, and s3 (period Π = 6)

σ(s2, t) = 4 − t , t ∈ (−3, 3] (green), σ(s3, t) = 6 − t ,
t ∈ (−2, 4] (red). The overall cost function c(e, t) =
min{σ(s1, t), σ (s2, t), σ (s3, t)} is illustrated with black
dashed lines. For example, c(e, 2) = 2 (take connection
s2 at cost σ(s2, 2) = 4 − 2 = 2: depart at time 2,
wait for 1 unit and then travel for 1 unit), c(e, 4) = 2
(depart at time 4, no waiting, take connection s3 with cost
σ(s3, 4) = 6 − 4 = 2). Note that the connection s1 does
not contribute to the cost function c because it departs
earlier and arrives later than the connection s2. Thus, s1
is obsolete and c(e, t) = min{σ(s2, t), σ (s3, t)} holds,
making c consistent. In practice, connections like s1, if they
exist, are removed from the schedule.

A path p from u to v in a temporal graph G = (V , E, c)

is a sequence of edges p = 〈e1, e2, . . . , en〉 such that
ei ∈ E, ei = (wi−1, wi), w0 = u, and wn = v; P(u, v)

is the set of all paths from node u to node v. The cost of a
path is the fastest time to traverse the path at a given start
time. Due to the consistency property of our cost function,
the path cost is the sum of all edge costs. The cost of path
p = 〈e1, e2, . . . , en〉 at time t , λ(p, t), is the cost sum of all
edges in p: λ(p, t) = ∑

1≤i≤n c(ei, ti), where t1 = t and
ti = ti−1 + c(ei−1, ti−1) for i > 1. The shortest-path cost
from node u to node v at time t is the minimum cost of any
path from u to v, sp(u, v, t) = minp∈P (u,v){λ(p, t)}. A path
with the minimum cost is called the shortest path. A node
v is reachable from a node u at time t within budget Δt iff
there is a path p ∈ P(u, v) such that the cost of p at time t

is no larger than Δt , i.e., λ(p, t) ≤ Δt .

Definition 1 Reachability query. Given a temporal graph
G = (V , E, c) with points of interst POI ⊆ V ,

13Inf Syst Front (2022) 24:11–29

the reachability query RQ(u, t, Δt) returns all points of
interest reachable from node u at time t within budget
Δt , i.e,

RQ(u, t, Δt) = {v ∈ POI | ∃p ∈ P(u, v), λ(p, t) ≤ Δt}

Problem definition The goal of this work is to develop an
efficient index-based solution for reachability queries that
scales to large temporal graphs.

3 Solution Overview

We propose a novel index structure, the reachability
index, to answer reachability queries. We introduce a bulk
loading technique for our index, provide access methods for
answering reachability queries, and discuss the incremental
insertion and deletion of POIs in the index.

The reachability index is built in a precomputation step.
To construct the index, we partition the temporal graph into
disjoint cells. Any such partitioning yields correct results.
The choice of cells, however, affects the effectiveness of the
index. We define requirements for a good partitioning and
propose a suitable partitioning technique.

The index is a temporal graph that contains only those
nodes of the original graph that are POIs or directly connect
different cells, called border nodes. Each POI belongs to a
cell. POIs can be inserted into and deleted from the index
at any time; the update cost is low and depends on a single
cell. The index consists of the original edges between border
nodes of neighboring cells and new edges between the
border nodes within a cell. Further, an edge between each
POI and the border nodes in its cell is introduced. The edge
costs are the costs of shortest paths between the respective
nodes in the original graph.

A high number of border nodes per cell increases the
index size. Each POI adds as many edges to the index as
there are border nodes in its cell.

A search query traverses the index cell by cell. The
border nodes are used to cross cells and to reach neighboring
cells. For each border node, we verify if any of the POIs in
that cell is reachable.

4 The Reachability Index

The reachability index R is a temporal graph that is
constructed from the original graph G as follows:

1. Graph partitioning. The nodes of graph G are split into
disjoint cells. At query time, instead of expanding edge
by edge in G, we expand cell by cell in the index.

2. Constructing the index core. Based on the graph
partitioning, we insert the so-called border nodes and

edges into the initially empty index. This index core
never changes.

3. Computing the index cost function. The edge cost is
computed as a shortest-path cost for each departure time
from a source node to a destination node.

4. Inserting POIs. Inserting a POI into a cell adds a new
node and an edge to each border node of the cell. POIs
that are not border nodes can be inserted and deleted
dynamically without modifying the rest of the index.

We detail each step of the index construction next.
Additionally, we discuss the factors that affect the size of
the reachability index and present a compaction technique
to reduce the number of connections.

4.1 Graph Partitioning

We partition the nodes of a temporal graph G = (V , E, c)

into a set of disjoint cells C = {C1, C2, . . . , Cn}, such that
each node ofG belongs to exactly one cellCi , i.e.,Ci∩Cj =
∅ for any pair of cells with i �= j , and

⋃
1≤i≤n Ci = V .

Each disconnected component of the graph that is supposed
to be indexed1 should be partitioned into at least two cells.
The nodes of a cell Ci that have an adjacent node in a cell
different from Ci are border nodes, Bi : A node v ∈ Ci is a
border node, v ∈ Bi , if it has an edge to or from another cell,
i.e., there is a node w ∈ V, w /∈ Ci , and an edge (v, w) ∈ E

or an edge (w, v) ∈ E. For example, the temporal graph G

in Fig. 1b of our example public transport network (Fig. 1a)
is partitioned into two cells (dashed boxes): C1 with border
nodes v5 and v7, and C2 with border nodes v8 and v9.

The cells define the structure of the reachability index.
The index will be expanded cell by cell to answer
reachability queries. A good partitioning should satisfy the
following properties:

1. Well connected inside. A cell comprises highly-linked
nodes with many edges and connections inside the cell.

2. Loosely connected outside. The number of border nodes
per cell is small.

3. Large distance between cells. Crossing cell borders is
expensive: the number of connections between cells is
small and their cost is high.

Finding a good partitioning that satisfies our require-
ments is not straightforward. We identify two relevant
approaches in literature: community detection (Blondel
et al., 2008; Newman & Girvan, 2004; Traag et al., 2019)
and minimum edge-cut partitioning (Karypis & Kumar,
1998a; 1998b). Both approaches strive to minimize the

1Indexing very small disconnected components may not be useful
since a reachability query expands at most the edges within the
disconnected component regardless of the query parameters.

14 Inf Syst Front (2022) 24:11–29

edges connecting different partitions. An additional objec-
tive of the minimum edge-cut partitioning is to produce
partitions of balanced size. Community detection algo-
rithms automatically adjust the number of partitions such
that the resulting partitions are densely connected inside.
For the minimum edge-cut partitioning the number k of par-
titions is a user-defined parameter. Both approaches allow
for edge weights that increase the cost for cutting an edge;
we choose the number of connections on an edge to be its
weight.

We assess how well do community detection and
minimum edge-cut partitioning suit our scenario. In this
section, we revisit the commonly used algorithms and
thoroughly evaluate their impact on our solution in
Section 7.

4.1.1 Community Detection

In contrast to fixing the number of partitions upfront, com-
munity detection aims at identifying naturally occurring
densely connected subgraphs. One of the best-known objec-
tive functions for community detection is modularity (New-
man & Girvan, 2004). Modularity is the difference between
the edges in the identified communities and the expected
number of edges in communities of an equivalent network
with edges distributed at random. Optimizing modularity,
i.e., finding communities that maximize modularity, is NP-
hard. We describe two approximations: Louvain (Blondel
et al., 2008), and its recent improvement Leiden (Traag
et al., 2019).

Louvain by Blondel et al. (2008) is a two-phase approach.
Initially, each node forms its own community. In the first
phase, nodes are moved to neighboring communities such
that the modularity increases. The result is the input to the
second phase, where an aggregated network is created. Each
node in the aggregated network represents a community
detected in the first phase. The two phases are repeated until
modularity cannot be increased any further.

Louvain produces partitions with the following guaran-
tees: no communities can be merged and no nodes can be
moved between communities to further improve modular-
ity (Traag et al., 2019).

Leiden by Traag et al. (2019) is an improvement of
Louvain. Traag et al. observe that Louvain may result
in poorly connected or even disconnected communities,
which is not desired. Leiden adds an additional phase to
Louvain. Initially, each node is in its community. In the
first phase, similarly to Louvain, Leiden moves nodes to
neighboring communities. However, unlike Louvain that
visits each node, Leiden uses an improvement, called fast
local move, to visit only those nodes whose neighborhood

has changed. In the second phase, called refinement, Leiden
finds sub-communities within each community resulted
from the first phase. Each of the sub-communities will
form their own community. The refinement phase is used
to avoid poorly connected and disconnected communities.
In the third phase, unlike Louvain, Leiden uses the refined
communities to aggregate the network.

Leiden provides two new guarantees in addition to the
guarantees provided by Louvain: communities are well
connected, and individual nodes are well connected to their
communities.

4.1.2 Minimum Edge-Cut Partitioning

The minimum edge-cut partitioning computes k partitions
such that: (a) the sizes of the partitions are balanced,
(b) the number of edges that connect nodes from
different partitions (the so-called edge-cut) is minimized.
Finding the minimum edge-cut is NP-hard. Efficient
approximate methods resulting in high-quality partitions
follow a multilevel partitioning paradigm. For our purpose
we chose the multilevel k-way partitioning (Karypis
& Kumar, 1998b) from the commonly used METIS
framework (Karypis & Kumar, 1998a).

The multilevel k-way partitioning (Karypis & Kumar,
1998b) is a three-phase approach, consisting of coarsening,
partitioning, and uncoarsening. In coarsening phase an
input graph is reduced by collapsing nodes and edges
iteratively. In each step, the graph from the previous step
is reduced further. The coarsening phase stops when the
coarsest graph has a small number of nodes, or the reduction
between two consecutive coarser graphs is too small. The
partitioning phase splits the coarsest graph into k partitions.
The uncoarsening phase projects the partitioned graph back
to the original input by unfolding nodes and edges. To do so,
it follows the backward sequence of coarsened graphs until
all nodes and edges are unfolded. During uncoarsening, a
refinement technique is applied to decrease the edge-cut.
Various algorithms have been proposed for each of the
phases; Karypis and Kumar (1998b) thoroughly evaluate the
options.

In our scenario, the number k of desired partitions is
not known up front. This parameter is hard to guess. Since
Leiden and Louvain do not require this input parameter, the
number of partitions produced by these algorithms could
serve as a guideline. This is the approach that we take in our
empirical evaluation.

4.2 Constructing the Index Core

Given a temporal graph G = (V , E, c) and a partitioning C

of G, we construct the core of our reachability index. The
index core is independent of POIs and never changes for

15Inf Syst Front (2022) 24:11–29

a given partitioning. The reachability index is a temporal
graph R = (VR, ER, cR) with nodes VR ⊂ V , edges
ER ⊆ VR × VR , and cost function cR(e, t) on the edges
e ∈ ER . For an edge e = (u, v) ∈ ER , cR is defined
as the shortest-path cost from u to v at time t in G, i.e.,
cR(e, t) = sp(u, v, t).

Index nodes. For each cellCi ∈ C, we insert all its border
nodes Bi into the node set VR of the index. Thus, the nodes
of the index VR = ⋃

1≤i≤|C| Bi . Figure 1c shows the index
core of the temporal graph (Fig. 1b) with cellsC1 = {v5, v7}
and C2 = {v8, v9}.

Index edges The edges of the index core are ER = BB ∪
BC. BB is the set of all edges between border nodes of
neighboring cells. For each edge (u, v) ∈ E between two
border nodes of different cells in C, u ∈ Ci, v ∈ Cj , i �= j ,
we insert a new edge between the respective nodes into the
index, ER = ER ∪ {(u, v)}. BC is the set of all edges
between pairs of border nodes within a cell. For each pair
u, v ∈ Bi , we insert two new edges (u, v) and (v, u) into
the index, ER = ER ∪ {(u, v), (v, u)}. For example, BB =
{α3, α4, α7} and BC = {α1, α2, α5, α6} in Fig. 1c.

4.3 Points of Interest

POIs can be inserted and deleted at any time, also after index
construction. This is beneficial because POIs may change
over time. A POI v ∈ V may be any node in the original
temporal graph. If v is a border node, no action is required
because such a node is in the index core already. Otherwise,
similarly to border nodes, inserting v into the index involves
three steps. (1)We add v to the index nodes (VR = VR∪{v}).
(2) We add a new edge from each border node of v′s cell to
v (we call such edges BP edges). (3) The cost function based
on shortest paths (same procedure as for all other edges)
is computed. Deleting a POI from the index removes the
POI node and all its incoming edges. For example, consider
inserting two POIs, v2, v10, into the index in Fig. 1d. We add
edges BP = {α8, α9, α10, α11}.

4.4 Computing the Index Cost Function

The cost function cR of an edge e = (u, v) ∈ ER in
index R is defined as the shortest-path cost from u to
v at time t in graph G, i.e., cR(e, t) = sp(u, v, t). For
computing the values of the cost function cR , we execute
Dijkstra’s single-source shortest-path algorithm once for
every border node b ∈ Bi and every departure time at b.
The expansion stops when all other border nodes in the
cell and all direct neighbors of b (i.e., nodes reachable
from b via a BB edge) are visited. Since the cells are
small compared to the overall graph, typically only a small
number of nodes needs to be considered for each execution

of Dijkstra’s algorithm. BC and BP edges may connect
nodes that are not reachable in the original temporal graph.
If a node is not reached during one of the shortest-path
computations, we assign infinite cost to the respective
edges.

Example 3 Cost examples for the index core in Fig. 1c are:
cR(α3, 14) = 3, cR(α1, 9) = 2, cR(α5, 9) = 2. In Fig. 1d,
the costs for the edges of type BP are cR(α8, 9) = 3,
cR(α9, 8) = 7, cR(α10, 9) = 1, and cR(α11, 11) = 1.

4.5 Index Size

The index consists of border nodes and POIs. Thus, the
number of index nodes is at most the number of nodes in
the temporal graph. We introduce three types of edges into
the index. BB edges connect border nodes between different
cells, and they are a subset of the temporal graph edges.
BC edges connect border nodes in a single cell, and their
cardinality is at most quadratic in the number of border
nodes. Each POI adds as many BP edges as border nodes in
a cell. The numbers of BC and BP edges depend only on the
subset of temporal graph nodes that are in a single cell. The
numbers do not depend on the graph size. In sparse graphs,
where many nodes have only a few edges, the reachability
index may grow larger than the temporal graph: we can
remove only a small number of original edges but need to
insert new BC and BP edges.

Each edge has as many edge cost values as there
are departure times from a node. The edge costs are
computed for each single cell in isolation, making parallel
computation possible. In particular, the edge cost of
a specific border node at a specific departure time is
independent of all other edge costs.

4.6 Index Compaction

The index size, as well as the size of the temporal graph,
is dominated by the size of the schedule, i.e., the number
of edge connections. After computing the edge costs in the
index, we observe that many different departure times have
the same arrival time at the destination. It is enough to keep
only one connection per arrival time, namely the one with
the maximum departure time. We leverage that and compact
the index by reducing the number of connections as follows.
Consider an edge e(u, v) ∈ ER and set S of departure–
arrival connection pairs (d, a) on that edge. We compact S

to S′ ⊆ S, such that S′ = {(d, a) ∈ S : �(di ,ai)∈Sai = a ∧
di > d}. Experiments show that this compaction technique
is highly effective and reduces the index size by up to 74%
(cf. Section 7). For example, the set of all connections on
edge α8 in Fig. 1d, {(8, 12), (9, 12), (11, 15)}, is compacted
into {(9, 12), (11, 15)}.

16 Inf Syst Front (2022) 24:11–29

5 Answering Reachability Queries

The core idea of our reachability algorithm is to expand cell
by cell rather than edge by edge. The BB edges between
border nodes of different cells allow us to expand to the
neighboring cells; the BC edges between border nodes of
the same cell reflect the time to cross a cell; the direct
BP edges from border nodes to POIs allow for a quick
evaluation of which POIs can be reached. In addition, we
discuss a heuristic to avoid unnecessary edge expansions
and processing of query nodes that are non-border nodes.

The reachability algorithm Algorithm 1 takes as an input
the reachability index R = (VR, ER, cR), query node
q, start time ts , and the cost budget Δt . The expansion
proceeds like in Dijkstra’s algorithm and returns the setN of
reachable POIs inR. Nodes and their costs from q are stored
in a min-heap M initialized to M[q] = 0, and M[v] = ∞
for all other nodes v (line 1). The closest node v to q is
popped from the min-heap (line 4), and the costs for nodes
adjacent to v are updated if smaller (lines 9–11). To retrieve
the correct edge cost, we do a binary search in the list of
edge costs sorted by departure time (line 9). Each node
is traversed only once. The algorithm terminates when no
more nodes with cost lower than the budget are in the heap
(line 5). Consider the reachability index in Fig. 1d. Here,
RQ(R, v5, 8, 6) = {v2, v10} because sp(v5, v2, t) = 4
(through α8) and sp(v5, v10, t) = 5 (through α4 and α10).
RQ(R, v5, 6, 6) = {v2} because sp(v5, v2, t) = 6 (through
α8) but sp(v5, v10, t) = 7 (through α4 and α10).

Avoiding unnecessary expansions Regarding the edges
within a cell, we observe the following. Consider Algo-
rithm 1 processing a border node b of a cell Ci . Then, the

costs of the other nodes, vj ∈ Ci , are updated w.r.t. the cost
of reaching them from b. When we pop a node vj in a later
round, and if vj was last updated by b, there is no point in
following the edges from vj to the other nodes in the cell.
The cost of accessing the other nodes in the cell through
vj cannot be smaller than the cost of accessing these nodes
directly from b since all edge costs are shortest paths. If,
however, vj was updated through an edge from a neighbor-
ing cell, the edges to the other nodes in the cell need to
be followed. We exploit this observation to avoid following
edges inside a cell that cannot lead to an update and thus
do not affect the solution. We flag the nodes whenever their
cost was updated by processing a node from within a cell,
and we remove the flag, otherwise (line 12). The outgoing
edges that must be expanded are selected based on the flag
(line 7).

Note that the number of edges within a cell is quadratic in
the number of border nodes of that cell. Thanks to the use of
flags we avoid unnecessary expansions. In particular, if the
cheapest way to reach all nodes in a cell is through k border
nodes, we only expand k(w − 1) edges per cell, where w

is the number of all border nodes and POIs in a cell. The
value of k is expected to be small and will often be 1 (i.e.,
the shortest path from a query node q to all nodes in the cell
crosses the border node that is closest to q).

Non-border query nodes The reachability index does not
contain all nodes of the original graph. If the query node
q in cell Ci is not a border node, the algorithm starts the
expansion from q in the temporal graph. All POIs reached
in cell Ci are part of the result. Once a border node b′ ∈ Bi

is reached, the expansion continues in the index at time
ts + sp(q, b′, ts).

Correctness We show that the shortest-path costs in the
index and the original temporal graph are identical.
Let u, w ∈ VR be two index nodes and p =
〈(v0, v1), (v1, v2), . . . , (vn−1, vn)〉 be the corresponding
shortest path in the temporal graph, i.e., u = v0, w =
vn. If there is a direct edge between u and w in the
index, the shortest-path cost is the cost of that edge: this
cost is precomputed using Dijkstra’s algorithm for each
departure time in the original temporal graph; since our
cost function is consistent (cf. Section 2), the edge cost is
correct (Kaufmann & Smith, 1993). Otherwise, u and w

are not in the same cell (all nodes in a cell are connected
with an edge). So, there must be a path along index nodes
u1, u2, . . . uk ⊆ v1, . . . vn−1 that are all on path p since cells
can be exited only through border nodes. We show that the
cost of the index path is indeed the shortest path. Assume
a node ui exists such that sp(v0, vn, t) < sp(u, ui, t) +
sp(ui, w, t) + sp(u, ui, t). On a path of length two, the

17Inf Syst Front (2022) 24:11–29

costs of edges (u, u1) and (u1, w) are precomputed shortest-
path costs, and they are therefore correct. The assumption,
however, implies that one of the edge costs could be
decreased, i.e., the assumption is incorrect. This argument
can be extended edge by edge to paths of arbitrary length.

6 RelatedWork

Shortest-path and reachability queries on road networks,
i.e., graphs with constant edge cost, have been studied
extensively. Unfortunately, these works cannot be applied
readily to public transport networks (Bast, 2009). An
evaluation by Bast et al. (Bast et al., 2016) shows a large
performance gap between the two types of networks. This
is due to the time-dependent edge costs of public transport
networks, which makes the precomputation efforts of many
algorithms infeasible.

Current solutions for public transport networks either
rely on Dijkstra’s algorithm (Dijkstra, 1959) or require
heavy precomputations. Dijkstra’s algorithm follows an
expansion technique that visits edges in all possi-
ble direction until the target is reached. Dijkstra-based
approaches include isochrone algorithms for multimodal
networks (Bauer et al., 2008; Gamper et al., 2011). They
expand from a query point using Dijkstra’s algorithm and
compute a so-called isochrone, which is the reachable por-
tion of the network at a given point in time. Since all edges
in the isochrone must be expanded, this approach does not
scale to large networks.

Many works fall into the category of labeling approaches.
The earliest work, 2-hop labeling (Cohen et al., 2003),
is designed for weighted graphs and is based on 2-hop
covers of shortest paths. Recent works strive to decrease the
index size and construction time (Cheng et al., 2013; Jin &
Wang, 2013), which are bottlenecks of 2-hop labeling and
prevent application to large graphs. Time Table Labeling
(TTL) (Wang et al., 2015) and Top Chain (Wu et al.,
2016) adapt 2-hop labeling to public transport networks;
they support shortest-path and point-to-point reachability
queries. In TTL, the main idea is to precompute label sets for
each node v containing reachable nodes from and to v. Top
Chain creates a directed acyclic graph (DAG), where each
node represents a departure time, and decomposes the DAG
to create the label sets. Creating label sets in both techniques
requires high precomputation costs and large index sizes.
To decrease the index size, Top Chain only stores K label
sets, called chains. The index size of Top Chain for small K
values is smaller than that of TTL, but there is no guarantee
that the query results can be found using the index.

Non-labeling techniques include Scalable Transfer Pat-
terns (Bast et al., 2016), Connection Scan Algorithm
(CSA) (Strasser, 2016), and Contraction Hierarchy for

Timetables (CHT) (Geisberger, 2010). Transfer Patterns
require an expensive profile search from each node to find
the optimal paths to all other nodes. CSA organizes a
schedule as two sequences of edges. The first sequence con-
tains sorted edges based on arrival times, and the second
sequence sorts edges based on departure times. At query
time, CSA scans the sequences in linear time to answer
earliest arrival path queries. CHT organizes vertices in hier-
archies and applies a contraction technique to reduce the
graph size for query processing. SPs are precomputed by
adding new edges to the graph, which are leveraged at query
time. These approaches involve expensive precomputations
or large index sizes, which limits their scalability.

To compute reachability queries as defined in this paper,
all techniques based on point-to-point queries require the
computation of shortest paths from a given query node to
every POI, which does not scale to large number of POIs.

7 Experiments

We experimentally evaluate our solution, RQ , and compare
it to two competitors, a no-index solution, NI , and a fully-
indexed solution, SP . We report on the index size and
efficiency of the algorithms w.r.t. the number of expanded
edges, which is the work that an algorithm has to do to find
reachable nodes.

Our algorithm, RQ , partitions the input graph in order to
build the index. We study the effect of different partitioning
techniques discussed in Section 4.1 on the index structure
and the performance of our RQ algorithm. We identify one
partitioning technique to be used in conjunction with RQ .

7.1 Implementation details

The algorithms are implemented in Python 3 and executed
on a virtual machine with 32 cores and 117GB RAM,
running Debian 10(buster). For the partitioning of the input
graphs we use the following Python libraries: for Louvain
python-louvain v0.132, for Leiden leidenalg
v0.8.23, for multilevel k-way partitioning metis v2020.14

with the underlying C METIS library v5.1.05.

7.2 Competitors

No-Index (NI) The no-index solution, NI , operates on the
original temporal graph and does not build an index. The
reachability query is computed with a modified version

2https://github.com/taynaud/python-louvain
3https://github.com/vtraag/leidenalg
4https://github.com/inducer/pymetis
5http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

18 Inf Syst Front (2022) 24:11–29

https://github.com/taynaud/python-louvain
https://github.com/vtraag/leidenalg
https://github.com/inducer/pymetis
http://glaros.dtc.umn.edu/gkhome/metis/metis/overview

of Dijkstra’s algorithm that supports our cost function
(cf. Section 5).

Shortest-Path (SP) The fully-indexed solution, SP , precom-
putes and stores all shortest paths from every node in the
temporal graph to each POI at every departure time. SP
represents the collection of works that index the shortest
paths between pairs of nodes (cf. Section 6). In terms of
lookups per shortest-path, SP is optimal since only a single
lookup is required per shortest-path query. Other solutions
for reachability queries based on indices for shortest-path
queries cannot outperform SP in terms of lookups per query.
Instead, these solutions trade in lookup performance to
achieve a smaller memory footprint (which is high for SP).
Therefore, the number of edge expansions performed by SP
for reachability queries cannot improve by substituting SP
by another shortest-path index.

7.3 Datasets

We use two real-world public transport networks repre-
sented as temporal graphs, Zurich and Berlin (2020),
and one synthetic graph, Synthetic. Zurich and Berlin are
obtained in GTFS format that is further processed. For these
graphs, we chose all transport modes and all connections
operating on Mondays. Synthetic is a 6 × 6 grid of equally-
sized spider-web subgraphs. Each spider-web subgraph has
one edge to every neighboring subgraph (to its left, right,
top, and bottom). This graph simulates loosely connected
cities that are densely connected inside. In such a case we
would expect a good partitioning to assign nodes of each
spider-web subgraph into a separate partition. Table 1 shows
the statistics, where #Conn is the number of all connections
(departure-arrival pairs) that can be used to cross an edge.
Figure 3 visualizes the structure of our public transport
networks.

7.4 Effect of Partitioning

Our solution, RQ , will work with any partitioning of
the input graph and compute correct results. However, we
observe that the index structure and performance of query
answering varies depending on the specific partitioning used
to build the index (cf. Section 4.1).

Table 1 Dataset statistics

Dataset #Nodes #Edges #Conn

Zurich 2,508 5,630 555,713

Berlin 12,984 34,791 1,348,070

Synthetic 145,188 433,272 31,042,468

We investigate the effect of different partitioning
techniques on our solution RQ . In our analysis, we include
two community detection algorithms, Louvain (Blondel
et al., 2008) and Leiden (Traag et al., 2019), and the
multilevel k-way partitioning (Karypis & Kumar, 1998b)
from the METIS framework (Karypis & Kumar, 1998a)
(denoted as METIS). In Louvain and Leiden, the so-called
modularity of the partitioning is optimized to find good
communities. To compute the modularity, a resolution and
a weight between pairs of nodes needs to be specified. We
use the default value 1 for the resolution and the number of
connections as the edge weight: the more connections exist
between two nodes, the better they are connected.

While Louvain and Leiden auto-detect the number of
partitions, METIS requires the number of partitions as an
input parameter. Defining a good number of partitions is not
straightforward since this parameter inherently depends on
the network structure. We evaluate METIS using the mean
of the partition numbers detected by Louvain and Leiden
when we compare to these algorithms in terms of index size
and query performance.

7.4.1 Structure of the Partitioning

Table 2 shows the statistics of partitions resulting from
applying different techniques to our input graphs: number
of partitions, partition sizes (average/min/max), number of
border nodes (total sum, average/min/max per partition).
We visualize the partitions for Zurich, Berlin and Synthetic
graphs in Figs. 4, 5, and 6, respectively.

Number of Partitions Louvain and Leiden auto-detect the
number of partitions. The number of detected partitions
is similar for both algorithms: Louvain detects 4% fewer
partitions than Leiden for Zurich and 15% more partitoins
for Synthetic; both algorithms produce the same number
of partitions for Berlin. METIS requires the number of
partitions as an input parameter. We choose the mean
value of the partition numbers detected by Louvain and
Leiden for METIS. For Synthetic, in addition, we provide
METIS with the number of spider webs (6 × 6 = 36)
that we used to construct the graph. The numbers in
Table 2 show that METIS correctly identifies all spider
webs when the number of partitions is well chosen, resulting
in a low number of border nodes. With the number of
partitions that we automatically detect using Louvain and
Leiden (44 partitions), however, the performance of METIS
significantly drops. The visualization of the partitions in
Fig. 6 confirms this result.

Size of Partititions One of the optimization goals of METIS
is to produce partitions well balanced in size, whereas
Louvain and Leiden detect communities regardless of their

19Inf Syst Front (2022) 24:11–29

Fig. 3 Structure of the different public transport networks

size. This is confirmed by our results. The partitions of
METIS are well balanced, while the community detection
algorithms produce some very small and some very large

partitions for the real world datasets. Figure 7 shows the
distribution of nodes per partition for the three algorithms
on Zurich, Berlin and Synthetic.

Table 2 Statistics for different partitioning techniques

Dataset Partitioning Border nodes

Algo. #Part avg min max sum avg min max

Zurich Louvain 44 57 2 163 314 7 0 20

Leiden 46 54.5 2 158 298 6.5 0 17

METIS 45 55.7 54 57 439 9.8 1 20

Berlin Louvain 51 254.6 2 924 1250 24.5 0 52

Leiden 51 254.6 2 747 1138 22.3 0 43

METIS 51 254.6 247 262 1439 28.2 9 53

Synthetic Louvain 48 3024.8 1042 4037 1979 41.2 2 90

Leiden 41 3541.2 1463 4036 904 22 2 84

METIS 44 3299.7 3204 3398 4395 99.9 51 227

36 4033 4031 4035 120 3.3 2 4

20 Inf Syst Front (2022) 24:11–29

Fig. 4 Partitioning of Zurich

Number of Border Nodes As discussed in Section 4.1, we
strive for partitions that are well connected inside and
loosely connected outside. A low number of border nodes
indicates loose connections between partitions since edges
between partitions can exist only between border nodes. For
Zurich and Berlin, Leiden exhibits the lowest values for

border nodes. We observe that for these datasets the good
balance of partition sizes of METIS comes at the cost of
more border nodes.

For the Synthetic graph, if METIS is given the optimal
number of 36 partitions, all spider webs are detected and
optimal partitions are produced, resulting in two border

Fig. 5 Partitioning of Berlin

21Inf Syst Front (2022) 24:11–29

Fig. 6 Partitioning of Synthetic
(each partition is colored
different)

Fig. 7 Distribution of nodes per
partition

22 Inf Syst Front (2022) 24:11–29

Table 3 Index core size for different partitionings

Dataset Algorithm #Nodes #Edges #Conn #Total

Zurich RQ LO 314 3,333 405,898 409,545

RQ LE 298 2,953 377,818 381,069

RQ ME45 439 5,131 436,281 441,851

Berlin RQ LO 1,250 38,286 2,229,584 2,269,120

RQ LE 1,138 30,124 1,936,377 1,967,639

RQ ME51 1,439 45,664 1, 976, 750 2,023,853

Synthetic RQ LO 1,979 150,840 13,263,713 13,416,532

RQ LE 904 63,622 5,833,430 5,897,956

RQ ME36 120 416 22,025 22,561

RQ ME44 4,395 598,896 35,192,991 35,796,282

nodes for the spider webs in the four corners, three border
nodes for the spider webs on the boundaries of the graph,
and four border nodes for all other spider webs. With the
auto-detected value of 44 partitions, METIS produces the
largest number of border nodes for Synthetic. The reason is
that METIS strives to balance the partition sizes also at the
cost of more border nodes and border edges.

Zurich and Berlin include small disconnected compo-
nents. Louvain and Leiden detect the small disconnected
components and do not further partition them. This explains
the zero values for the minimum number of border nodes in
Table 2. METIS includes the disconnected components into
larger partitions to balance their sizes.

7.4.2 Index Size and Structure

The border nodes resulting from a partitioning define the
structure of our RQ index. Table 3 presents the index
core size for different partitionings. The suffixes LO,

LE, and MEk in the Algorithm column denote Louvain,
Leiden, and METIS with k partitions, respectively. The
values that increase the index size are the number of
nodes (#Nodes) and edges (#Edges), and the number of
connections (#Conn), which is the dominating factor. The
total sum of these three values (#Total) is used to compare
index sizes among the different partitionings.

Table 3 suggests that the most promising partitioning is
Leiden, which results in the smallest overall index core size
(#Total). An exception is Synthetic if we provide METIS
with the optimal number of 36 partitions: the resulting
index core is much smaller than the index core for the
other partitionings. With the auto-detected number of 44
partitions, however, METIS produces the largest index core.

To evaluate our RQ index size after additions of POIs,
we randomly pick 5% of the input graph nodes to be POIs
and we built our index for different partitionings across
five different POI samples. Table 4 shows average (avg)
and standard deviation (σ , rounded values) of the counts

Table 4 Index size for different partitionings given multiple samples of POIs

Dataset Algorithm #Nodes #Edges #Conn

Algorithm avg σ avg σ avg σ

Zurich RQ LO 421 4 4,173 47 456,913 7,206

RQ LE 406 2 3,733 46 425,621 11,207

RQ ME45 542 2 6,102 35 494,138 8,437

Berlin RQ LO 1,834 8 54,988 283 2,385,623 7,103

RQ LE 1,732 5 44,643 161 2,717,979 13,747

RQ ME51 2,022 10 61,893 199 2,539,917 14,743

Synthetic RQ LO 9,135 9 350,070 2,811 28,873,351 259,401

RQ LE 8,122 7 163,449 1,982 13,646,302 173,456

RQ ME36 7,375 2 24,594 61 1,420,407 7,379

RQ ME44 11,423 18 1,281,986 5,555 78,219,714 205,325

23Inf Syst Front (2022) 24:11–29

that affect the index size (number of nodes, edges, and
connections). In Zurich and Berlin, the average number
of nodes and edges using Leiden is the smallest. On the
Synthetic dataset, METIS with 36 partitions outperforms all
the other partitioning algorithms for all values. The number
of nodes varies across the samples due to a varying number
of POIs that are border nodes. The standard deviation is
below 2% for any of the values, indicating that the particular
choice of POIs does not have a large effect on the index
size.

7.4.3 Query Performance.

To measure the effect of different partitioning techniques on
the querying performance, we count the number of edges
that RQ must expand for answering a reachability query.
We compare the indices constructed over the partitioning of
Louvain, Leiden, and METIS.

In this experiment, we use the RQ index constructed for
one of the POI samples discussed in Section 7.4.2. All query
nodes are border nodes. Since the different partitionings
produce different border nodes, we pick all border nodes
that exist in all partitionings as query nodes. For each query
node, we executed a total of 10 different reachability queries
varying the starting time (8:00, 12:00, 16:00, 18:00, 22:00)
and time budget (60 and 120 minutes).

The results for our three input graphs are shown in Fig. 8.
On the y-axis we measure the relative difference of RQ

compared to no-index baseline NI (horizontal red line,
100%). The data points are ordered along the x-axis by
the number of expanded edges, separately for each data
series. We evaluate Louvain (RQ LO), Leiden (RQ LE),
and METIS (RQ MEk). The number k of partitions for
METIS is different for each dataset to approximately match
the number of partitions that Louvain and Leiden produce
for the respective setting (cf. Table 2).

In Zurich and Synthetic, all the three partitioning
techniques perfom similarly for most of the data points.
Leiden (RQ LE) and Louvain (RQ LO) perform slightly
worse than METIS (RQ MEk) for some of the data
points on the Berlin dataset. Independently of the chosen
partitioning, RQ clearly outperforms the baseline NI on all
datesets: Except for a small number of outliers, the index
constructed using Leiden reduces the number of expanded
edges by at least 55% for Zurich, 70% for Berlin, and 90%
for Synthetic.

7.4.4 Which Partitioning to Choose?

We summarize our experimental findings and evaluate the
different partitioning techniques.

Leiden outperforms Louvain with respect to the index
size. Given a similar number of partitions as Leiden and
Louvain, (1) METIS produces more balanced partition
sizes, but the partitions have more border nodes on average,
and also (2) the index size (in particular the number of

Fig. 8 Relative number of
expanded edges w.r.t. NI
(100%)

24 Inf Syst Front (2022) 24:11–29

Table 5 Index (RQ using Leiden partitioning)

Dataset Algorithm #Nodes #Edges #Conn

Zurich RQ 406 3,733 425,621

SP 2,508 313,500 69,464,152

NI 2,508 5,630 555,713

Berlin RQ 1,732 44,643 2,717,979

SP 12,984 8,426,616 874,897,430

NI 12,984 34,791 1,348,070

Synthetic RQ 8,122 163,449 13,646,302

SP 145,188 1,053,919,692 225,337,275,212

NI 145,188 433,272 31,042,468

connections that dominates the index size) is smaller for
Leiden than for METIS.

In terms of query performance, METIS is competitive
with the other approaches and in some cases slightly
outperforms them. The catch is that the performance of
METIS depends on the parameter k, which is hard to choose
without running experiments similar to the ones in our tests.
The parameters k so determined may not be valid for other
networks or query loads.

Overall we suggest to use the Leiden partitioning in
conjunction with our RQ index.

7.5 RQ vs. Competitors

In this section we compare RQ with its competitors
SP and NI . We use RQ with Leiden partitioning (as
we suggest in Section 7.4.4) for all experiments in this
section.

7.5.1 Index Size

We compare the index size of RQ (with Leiden partitioning)
to the index sizes of its competitors. Although NI does not
require precomputation, the input graph has to be kept in
memory. In Table 5, we compare the index sizes (RQ , SP)
to the input graph size (NI).

RQ and SP precompute certain shortest paths and build
an index structure that is sufficient to answer reachability
queries. If the index of SP is stored as a graph, the
index nodes are identical to the input graph nodes (POIs
are a subset of the input graph nodes), the number of
index edges is computed as #Nodes × #POIs from the
number of input graph nodes and POIs (an edge is inserted
between every node and every POI), and the number of
index connections results from computing a shortest path at
every departure time to every POI. For RQ the index size
depends on the position of the border nodes. We randomly
pick 5% of the input graph nodes as POIs and show the

average values for #Nodes, #Edges, and #Conn over five
samples.

The index size of RQ is always smaller than that of
SP (up to four orders of magnitude in the Synthetic
graph). RQ is also significantly smaller than the original
Zurich and Synthetic graphs (NI). Although RQ has
significantly fewer nodes and edges than the original graph
for Berlin, the number of connections is higher. This is
caused by the sparsity of Berlin (cf. Section 4.5). Finally,
#Connections is the number of edge connections stored.
For RQ , we list the absolute number of connections after
the compaction (cf. Section 4.6). The reduction rate of
compaction is high: 74% for Zurich and Berlin, and 73% for
Synthetic.

Table 6 shows the runtime to build our RQ index. The
shortest path computations are executed in parallel on 20
cores. For Zurich, the index builds in less than 2 min for
Louvain, Leiden, and METIS. All runtimes for Berlin are
below 30 min. For Synthetic, the index construction time
for METIS is only 7 min with 36 partitions, but 12 hrs
with 44 partitions. The high construction time for METIS
with 44 partitions is due to the poor partitioning and the

Table 6 Index construction time

Dataset Algorithm Time (min)

Zurich RQ LO 0.7

RQ LE 0.7

RQ ME45 1.1

Berlin RQ LO 26.3

RQ LE 20.2

RQ ME51 29.1

Synthetic RQ LO 48.4

RQ LE 25.6

RQ ME36 7.2

RQ ME44 720.4

25Inf Syst Front (2022) 24:11–29

Fig. 9 Number of expanded
edges (y-axis in log scale)

Fig. 10 Query time in ms
(y-axis in log scale)

26 Inf Syst Front (2022) 24:11–29

resulting high number of connections that require many
shortest path computations (before compaction, there are
292,883,908 connections, each resulting from one shortest
path computation).

7.5.2 Performance of Query Answering

To evaluate the efficiency, we compare the number of edges
that each algorithm has to process in order to find all
reachable POIs (Fig. 9).

In this experiment, we use our RQ index constructed
using one of the samples discussed in Section 7.4.2. One
data point in the figure (scatter plot) is a single reachability
query. Data points are sorted along the x-axis by the number
of expanded edges. We execute one reachability query
starting at every border node in our index. We do so at
five different start times (8:00, 12:00, 16:00, 18:00, 22:00)
and for two time budgets (60 and 120 minutes). Thus, the
number of data points is 10×#Border nodes. The budgets
are large enough to force RQ to traverse multiple edges.
Since the edge costs of large cells in the RQ index are often
above 15 minutes (and above 30 minutes in about half of the
cases), budgets near these values provide little insight. Since
SP precomputes the path to each POI, it always evaluates
one edge per POI. This is a lower bound on the cost of any
point-to-point index. Although the index of SP is orders of
magnitude larger, RQ expands significantly fewer edges for
many of the data points. We observe the largest differences
for the budget of 120 min. On Synthetic, the number of
edges expanded by RQ is up to three orders of magnitude
lower than that of SP, and it is up to one order of magnitude
lower than that of NI. RQ always expands fewer edges than
NI. Values equal to zero indicate that an algorithm cannot
expand due to high connection costs.

In Fig. 10 we compare the query times of RQ andNI . We
measure at the granularity of milliseconds, which results in
runtime zero for very short query executions. As expected
from the lower number of expanded edges, RQ outperforms
NI on almost all data points across the three datasets.

Overall, our experiments show that, despite its small
size, RQ substantially reduces the number of expanded
edges, and therefore speeds up reachability queries in public
transport networks.

8 Conclusion

The paper offers improved support for reachability queries
in temporal graphs that retrieve all reachable points of
interest (POIs) from a given query node at a specific start
time within a given time budget. We observe that current
solutions do not scale to large networks (solutions based
on Dijkstra’s algorithm without a pre-computed index) or

to networks with many POIs (solutions based on an index
for single-path queries that must be executed for each
POI separately). We propose a solution based on a novel
access structure, the reachability index. This index partitions
the original temporal graph into cells, thus enabling us to
expand the graph cell by cell rather than edge by edge.
We evaluate different graph partitioning techniques and
study the effect on index size and query performance. Our
empirical evaluations suggest that our technique is both
effective and efficient.

Acknowledgements This work was supported by Austrian Science
Fund (FWF): W1237. We wish to thank Christine Gfrerer for her
valuable suggestions, as well as Alfred Egger and Manuel Kocher for
their help with the experiments.

Funding Open access funding provided by Paris Lodron University
of Salzburg. Open access funding provided by Austrian Science Fund
(FWF).

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indicate
if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless
indicated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permitted
use, you will need to obtain permission directly from the copyright
holder. To view a copy of this licence, visit http://creativecommons.
org/licenses/by/4.0/.

References

Amer-Yahia, S., Roy, S. B., Chawlat, A., Das, G., & Yu, C. (2009).
Group recommendation: Semantics and efficiency. Proceedings of
the VLDB Endowment, 2(1), 754–765.

Bast, H. (2009). Car or public transport - two worlds. In Efficient
algorithms: Essays dedicated to kurt mehlhorn on the occasion of
his 60th birthday (pp. 355–367).

Bast, H., Delling, D., Goldberg, A. V., Müller-Hannemann, M., Pajor,
T., Sanders, P., Wagner, D., & Werneck, R.F. (2016). Route
planning in transportation networks. In Algorithm engineering:
Selected results and surveys (pp. 19–80).

Bast, H., Hertel, M., & Storandt, S. (2016). Scalable transfer patterns.
In Proceedings of the meeting on algorithm engineering and
experiments (ALENEX) (pp. 15–29).

Bauer, V., Gamper, J., Loperfido, R., Profanter, S., Putzer, S., &
Timko, I. (2008). Computing isochrones in multi-modal, schedule-
based transport networks. In Proceedings of the ACM SIGSPATIAL
international conference on advances in geographic information
systems.

Blondel, V. D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008).
Fast unfolding of communities in large networks. Journal of
Statistical Mechanics: Theory and Experiment, 2008(10).

Cheng, J., Huang, S., Wu, H., & Fu, A.W. (2013). TF-Label: A
topological-folding labeling scheme for reachability querying in
a large graph. In Proceedings of the ACM SIGMOD international
conference on management of data (pp. 193–204).

27Inf Syst Front (2022) 24:11–29

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Cohen, E., Halperin, E., Kaplan, H., & Zwick, U. (2003). Reachability
and distance queries via 2-hop labels. SIAM Journal on
Computing, 32(5), 1338–1355.

Dijkstra, E. W. (1959). A note on two problems in connexion with
graphs. Numerische Mathematik, 1, 269–271.

Gamper, J., Böhlen, M., Cometti, W., & Innerebner, M. (2011). Defin-
ing isochrones in multimodal spatial networks. In Proceedings of
the ACM international conference on information and knowledge
management (CIKM) (pp. 2381–2384).

Geisberger, R. (2010). Contraction of timetable networks with realistic
transfers. In Proceedings of the international symposium on
experimental algorithms (pp. 71–82).

Jameson, A., & Smyth, B. (2007). Recommendation to groups. In
The adaptive web: Methods and strategies of web personalization
(pp. 596–627).

Jin, R., & Wang, G. (2013). Simple, fast, and scalable reachability
oracle. Proceedings of the VLDB Endowment, 6(14), 1978–1989.

Karypis, G., & Kumar, V. (1998). A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on
Scientific Computing, 20(1), 359–392.

Karypis, G., & Kumar, V. (1998). Multilevel k-way partitioning
scheme for irregular graphs. Journal of Parallel and Distributed
Computing, 48(1), 96–129.

Kaufmann, D. E., & Smith, R. L. (1993). Fastest paths in time-
dependent networks for intelligent vehicle-highway systems
application. Journal of Intelligent Transportation Systems, 1(1),
1–11.

Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating
community structure in networks. Physical Review E, 69, 026113.

Seufert, S., Anand, A., Bedathur, S. J., & Weikum, G. (2013).
FERRARI: Flexible and efficient reachability range assignment
for graph indexing. In Proceedings of the IEEE international
conference on data engineering (ICDE) (pp. 1009–1020).

Strasser, B. (2016). Intriguingly simple and efficient time-dependent
routing in road networks. arXiv:1606.06636.

Tesfaye, B., & Augsten, N. (2016). Reachability queries in public
transport networks. In Proceedings of the 28th GI-Workshop
Grundlagen von Datenbanken, Nörten Hardenberg, Germany,
May 24-27, 2016, (Vol. 1594 pp. 109–114).

Tesfaye, B., Augsten, N., Pawlik, M., Böhlen, M. H., & Jensen,
C.S. (2020). An efficient index for reachability queries in public
transport networks. In Advances in databases and information
systems - 24th european conference, ADBIS 2020, lyon, france,
august 25-27, 2020, proceedings, (Vol. 12245 pp. 34–48).

Traag, V. A., Waltman, L., & van Eck, N.J. (2019). From louvain
to leiden: guaranteeing well-connected communities. Nature
scientific reports 9.

Wang, S., Lin, W., Yang, Y., Xiao, X., & Zhou, S. (2015). Efficient
route planning on public transportation networks A labelling
approach. In Proceedings of the ACM SIGMOD international
conference on management of data (pp. 967–982).

Wu, H., Huang, Y., Cheng, J., Li, J., & Ke, Y. (2016). Reachability
and time-based path queries in temporal graphs. In Proceedings
of the IEEE international conference on data engineering (ICDE)
(pp. 145–156).

Zurich, & Berlin (2020). GTFS. https://data.stadt-zuerich.ch/dataset/
vbz fahrplandaten gtfs, https://daten.berlin.de/datensaetze/
vbb-fahrplandaten-gtfs, Accessed January 31, 2020.

Publisher’s Note Springer Nature remains neutral with regard to
jurisdictional claims in published maps and institutional affiliations.

Bezaye Tesfaye is a PhD candidate within the Database research
group at the University of Salzburg. She received her MSc degree
in Geoinformatics from University of Twente in 2013. Her research
interests include efficient path queries in graphs and extension of
spatio-temporal databases. She is part of the European Software
Sustainability Infrastructure (EuSSI) consortium, and is a member of
deRSE (German Research Software Engineers association). She is also
a software carpentry instructor.

Nikolaus Augsten is a full professor in the Department of Computer
Science at the University of Salzburg, where he heads the Database
Group. He received his PhD degree in Computer Science from Aalborg
University, Denmark, in 2008, and holds a MSc degree (Dipl.-Ing.)
from Graz University of Technology, Austria. Prior to joining the
University of Salzburg in 2013, he was an assistant professor at
the Free University of Bozen-Bolzano, Italy. He was on leave at
TU Müchen, Germany, in 2010/2011 and visited Washington State
University in 2005/2006. In his research, Augsten deals with technical
issues of efficiently storing, updating, and querying large amounts
of data. He is particularly interested in similarity queries, which
do not require an exact match but allow some degree of fuzziness.
His research is motivated by concrete applications and results in
new algorithms that are implemented and tested on the motivating
application. The results of his research were published in the most
prestigious outlets of the database field. For his work on top-k
queries over tree data he received the Best Paper Award at the
IEEE International Conference on Data Engineering in 2010. Augsten
regularly serves on the program committee of the most important
international database conferences and was an associate editor of the
VLDB Journal.

28 Inf Syst Front (2022) 24:11–29

http://arxiv.org/abs/1606.06636
https://data.stadt-zuerich.ch/dataset/vbz_fahrplandaten_gtfs
https://data.stadt-zuerich.ch/dataset/vbz_fahrplandaten_gtfs
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-gtfs
https://daten.berlin.de/datensaetze/vbb-fahrplandaten-gtfs

Mateusz Pawlik is a senior scientist at the University of Salzburg and a
member of the Database Research Group and the Centre for Cognitive
Neuroscience. He received his PhD degree in Computer Science in
2014 from the University of Bozen/Bolzano (Italy), and his MSc
degree from Adam Mickiewicz University in Poznań (Poland). His
research interests span similarity of tree-structured data, reachability
in public transport networks, and recently efficient management of
neuroscientific data. His research results appeared in the top outlets
of the databases community. Pawlik is the main developer of the Tree
Similarity Library (http://tree-edit-distance.dbresearch.uni-salzburg.
at/).

Michael H. Böhlen is a professor of computer science at the University
of Zürich where he heads the database technology group. His research
focuses on temporal data management and analytics, including query
processing and indexing, statistical data management, and machine
learning. He received his Ph.D. degree from ETH Zürich and was
a faculty member at Aalborg University and the Free University of
Bozen-Bolzano. He served as Program Chair for VLDB 2013, EDBT
2018 and SSDBM 2018, was a member of the VLDB Endowment’s
Board of Trustees, and served as associate editor for ACM TODS and
the VLDB Journal.

Christian S. Jensen is Professor of Computer Science at Aalborg
University, Denmark. His research focuses on temporal and spatio-
temporal data management and analytics, including machine learning,
data mining, and query processing. He is an ACM and IEEE Fellow,
and he is a member of Academia Europaea, the Royal Danish
Academy of Sciences and Letters, and the Danish Academy of
Technical Sciences. He has received several awards for his research,
most recently the 2019 IEEE TCDE Impact Award. He is President of
the steering committee of the Swiss National Research Program on Big
Data. In Germany, he serves on the scientific advisory board the Max
Planck Institute for Informatics; and in Norway, he chairs the Scientific
Advisory Board of the Norwegian Research Center for AI Innovation.

29Inf Syst Front (2022) 24:11–29

http://tree-edit-distance.dbresearch.uni-salzburg.at/
http://tree-edit-distance.dbresearch.uni-salzburg.at/

	Speeding Up Reachability Queries in Public Transport Networks Using Graph Partitioning
	Abstract
	Introduction
	Preliminaries and Problem Definition
	Problem definition

	Solution Overview
	The Reachability Index
	Graph Partitioning
	Community Detection
	Louvain
	Leiden

	Minimum Edge-Cut Partitioning

	Constructing the Index Core
	Index edges

	Points of Interest
	Computing the Index Cost Function
	Index Size
	Index Compaction

	Answering Reachability Queries
	The reachability algorithm
	Avoiding unnecessary expansions
	Non-border query nodes
	Correctness

	Related Work
	Experiments
	Implementation details
	Competitors
	No-Index (NI)
	Shortest-Path (SP)

	Datasets
	Effect of Partitioning
	Structure of the Partitioning
	Number of Partitions
	Size of Partititions
	Number of Border Nodes

	Index Size and Structure
	Query Performance.
	Which Partitioning to Choose?

	RQ vs. Competitors
	Index Size
	Performance of Query Answering

	Conclusion
	References

