23 research outputs found

    Studies of an 800-kilobase DNA stretch of the Drosophila X chromosome: comapping of a subclass of scaffold-attached regions with sequences able to replicate autonomously in Saccharomyces cerevisiae.

    No full text
    We have previously mapped scaffold-attached regions (SARs) on an 800-kilobase DNA walk from the Drosophila X chromosome. We have also previously shown that the strength of binding, i.e., the ability of SARs to bind to all nuclear scaffolds or only to a fraction of them varied from one SAR to another one. In the present study, 71 of the 85 subfragments that bind scaffolds and 38 fragments that do not bind scaffolds were tested for their ability to promote autonomous replicating sequence (ARS) activity in Saccharomyces cerevisiae. Sixteen SAR-containing fragments from the chromosome walk were also examined for association to yeast nuclear scaffolds in vitro. All identified ARSs (a total of 27) were present on SAR-containing fragments, except two, which were adjacent to SARs. There is thus a correlation between ARS and SAR activities, and this correlation defines a SAR subclass. Moreover, the presence of an ARS on a DNA fragment appeared to be highly correlated with the strength of binding. The binding activity was highly conserved from Drosophila melanogaster to yeast. These data suggest that Drosophila DNA sequences responsible for binding to components of the nuclear scaffold from either D. melanogaster or yeast may be involved in the process of heterologous extrachromosomal replication in yeasts

    Mutations in ccf, a novel Drosophila gene encoding a chromosomal factor, affect progression through mitosis and interact with Pc-G mutations.

    No full text
    We report herein the isolation of ccf, a new gene located in region 82E and essential for Drosophila development. This gene, expressed throughout development, encodes a novel product of 68 kDa which is found in the nucleus during interphase and labels, in a novel pattern, centrosomes and chromosome arms during mitosis. Mutations in ccf give rise to late larvae with small imaginal discs and to adults showing appendages of reduced size, consistent with CCF involvement in cell proliferation. Neuroblast squash analyses show that CCF is required for proper condensation of mitotic chromosomes and, therefore, for progression through mitosis. Furthermore, we observe that adult ccf mutants as well as animals overexpressing CCF during larval stages exhibit homeotic transformations. We also find that mutations in the Pc-G genes Polycomb, polyhomeotic and Enhancer of zeste are enhanced by ccf mutations. Finally, we show that the CCF protein binds to specific sites on polytene chromosomes, many of which are shared with the Posterior sex combs Pc-G protein. Together, these results suggest a role for the CCF protein in the maintenance of chromosome structure during mitosis and interphase
    corecore