3,569 research outputs found
Study of Spectral/Radiometric Characteristics of the Thematic Mapper for Land Use Applications
An investigation conducted in support of the LANDSAT 4/5 Image Data Quality Analysis (LIDQA) Program is discussed. Results of engineering analyses of radiometric, spatial, spectral, and geometric properties of the Thematic Mapper systems are summarized; major emphasis is placed on the radiometric analysis. Details of the analyses are presented in appendices, which contain three of the eight technical papers produced during this investigation; these three, together, describe the major activities and results of the investigation
Accelerating random walks by disorder
We investigate the dynamic impact of heterogeneous environments on
superdiffusive random walks known as L\'evy flights. We devote particular
attention to the relative weight of source and target locations on the rates
for spatial displacements of the random walk. Unlike ordinary random walks
which are slowed down for all values of the relative weight of source and
target, non-local superdiffusive processes show distinct regimes of attenuation
and acceleration for increased source and target weight, respectively.
Consequently, spatial inhomogeneities can facilitate the spread of
superdiffusive processes, in contrast to common belief that external disorder
generally slows down stochastic processes. Our results are based on a novel
type of fractional Fokker-Planck equation which we investigate numerically and
by perturbation theory for weak disorder.Comment: 8 pages, 5 figure
Towards deterministic equations for Levy walks: the fractional material derivative
Levy walks are random processes with an underlying spatiotemporal coupling.
This coupling penalizes long jumps, and therefore Levy walks give a proper
stochastic description for a particle's motion with broad jump length
distribution. We derive a generalized dynamical formulation for Levy walks in
which the fractional equivalent of the material derivative occurs. Our approach
will be useful for the dynamical formulation of Levy walks in an external force
field or in phase space for which the description in terms of the continuous
time random walk or its corresponding generalized master equation are less well
suited
Development, implementation and evaluation of satellite-aided agricultural monitoring systems
Research activities in support of AgRISTARS Inventory Technology Development Project in the use of aerospace remote sensing for agricultural inventory described include: (1) corn and soybean crop spectral temporal signature characterization; (2) efficient area estimation techniques development; and (3) advanced satellite and sensor system definition. Studies include a statistical evaluation of the impact of cultural and environmental factors on crop spectral profiles, the development and evaluation of an automatic crop area estimation procedure, and the joint use of SEASAT-SAR and LANDSAT MSS for crop inventory
Comment on "Why is the DNA denaturation transition first order?"
In this comment we argue that while the conclusions in the original paper (Y.
Kafri, D. Mukamel and L. Peliti, Phys. Rev. Lett. 85, 4988 (2000)) are correct
for asymptotically long DNA chains, they do not apply to the chains used in
typical experiments. In the added last paragraph, we point out that for real
DNA the average distance between denatured loops is not of the order of the
persistence length of a single-stranded chain but much larger. This
corroborates our reasoning that the double helix between loops is quite rigid,
and thereby our conclusion.Comment: 1 page, REVTeX. Last paragraph adde
Fractional Klein-Kramers equation for superdiffusive transport: normal versus anomalous time evolution in a differential L{\'e}vy walk model
We introduce a fractional Klein-Kramers equation which describes
sub-ballistic superdiffusion in phase space in the presence of a
space-dependent external force field. This equation defines the differential
L{\'e}vy walk model whose solution is shown to be non-negative. In the velocity
coordinate, the probability density relaxes in Mittag-Leffler fashion towards
the Maxwell distribution whereas in the space coordinate, no stationary
solution exists and the temporal evolution of moments exhibits a competition
between Brownian and anomalous contributions.Comment: 4 pages, REVTe
Understanding and utilization of Thematic Mapper and other remotely sensed data for vegetation monitoring
The TM Tasseled Cap transformation, which provides both a 50% reduction in data volume with little or no loss of important information and spectral features with direct physical association, is presented and discussed. Using both simulated and actual TM data, some important characteristics of vegetation and soils in this feature space are described, as are the effects of solar elevation angle and atmospheric haze. A preliminary spectral haze diagnostic feature, based on only simulated data, is also examined. The characteristics of the TM thermal band are discussed, as is a demonstration of the use of TM data in energy balance studies. Some characteristics of AVHRR data are described, as are the sensitivities to scene content of several LANDSAT-MSS preprocessing techniques
Users manual for the US baseline corn and soybean segment classification procedure
A user's manual for the classification component of the FY-81 U.S. Corn and Soybean Pilot Experiment in the Foreign Commodity Production Forecasting Project of AgRISTARS is presented. This experiment is one of several major experiments in AgRISTARS designed to measure and advance the remote sensing technologies for cropland inventory. The classification procedure discussed is designed to produce segment proportion estimates for corn and soybeans in the U.S. Corn Belt (Iowa, Indiana, and Illinois) using LANDSAT data. The estimates are produced by an integrated Analyst/Machine procedure. The Analyst selects acquisitions, participates in stratification, and assigns crop labels to selected samples. In concert with the Analyst, the machine digitally preprocesses LANDSAT data to remove external effects, stratifies the data into field like units and into spectrally similar groups, statistically samples the data for Analyst labeling, and combines the labeled samples into a final estimate
Bubble dynamics in DNA
The formation of local denaturation zones (bubbles) in double-stranded DNA is
an important example for conformational changes of biological macromolecules.
We study the dynamics of bubble formation in terms of a Fokker-Planck equation
for the probability density to find a bubble of size n base pairs at time t, on
the basis of the free energy in the Poland-Scheraga model. Characteristic
bubble closing and opening times can be determined from the corresponding first
passage time problem, and are sensitive to the specific parameters entering the
model. A multistate unzipping model with constant rates recently applied to DNA
breathing dynamics [G. Altan-Bonnet et al, Phys. Rev. Lett. 90, 138101 (2003)]
emerges as a limiting case.Comment: 9 pages, 2 figure
Universal Multifractality in Quantum Hall Systems with Long-Range Disorder Potential
We investigate numerically the localization-delocalization transition in
quantum Hall systems with long-range disorder potential with respect to
multifractal properties. Wavefunctions at the transition energy are obtained
within the framework of the generalized Chalker--Coddington network model. We
determine the critical exponent characterizing the scaling behavior
of the local order parameter for systems with potential correlation length
up to magnetic lengths . Our results show that does not
depend on the ratio . With increasing , effects due to classical
percolation only cause an increase of the microscopic length scale, whereas the
critical behavior on larger scales remains unchanged. This proves that systems
with long-range disorder belong to the same universality class as those with
short-range disorder.Comment: 4 pages, 2 figures, postsript, uuencoded, gz-compresse
- …