166 research outputs found
Two-Dimensional Spectroscopy of Photospheric Shear Flows in a Small delta Spot
In recent high-resolution observations of complex active regions,
long-lasting and well-defined regions of strong flows were identified in major
flares and associated with bright kernels of visible, near-infrared, and X-ray
radiation. These flows, which occurred in the proximity of the magnetic neutral
line, significantly contributed to the generation of magnetic shear. Signatures
of these shear flows are strongly curved penumbral filaments, which are almost
tangential to sunspot umbrae rather than exhibiting the typical radial
filamentary structure. Solar active region NOAA 10756 was a moderately complex,
beta-delta sunspot group, which provided an opportunity to extend previous
studies of such shear flows to quieter settings. We conclude that shear flows
are a common phenomenon in complex active regions and delta spots. However,
they are not necessarily a prerequisite condition for flaring. Indeed, in the
present observations, the photospheric shear flows along the magnetic neutral
line are not related to any change of the local magnetic shear. We present
high-resolution observations of NOAA 10756 obtained with the 65-cm vacuum
reflector at Big Bear Solar Observatory (BBSO). Time series of
speckle-reconstructed white-light images and two-dimensional spectroscopic data
were combined to study the temporal evolution of the three-dimensional vector
flow field in the beta-delta sunspot group. An hour-long data set of consistent
high quality was obtained, which had a cadence of better than 30 seconds and
sub-arcsecond spatial resolution.Comment: 23 pages, 6 gray-scale figures, 4 color figures, 2 tables, submitted
to Solar Physic
4pi Models of CMEs and ICMEs
Coronal mass ejections (CMEs), which dynamically connect the solar surface to
the far reaches of interplanetary space, represent a major anifestation of
solar activity. They are not only of principal interest but also play a pivotal
role in the context of space weather predictions. The steady improvement of
both numerical methods and computational resources during recent years has
allowed for the creation of increasingly realistic models of interplanetary
CMEs (ICMEs), which can now be compared to high-quality observational data from
various space-bound missions. This review discusses existing models of CMEs,
characterizing them by scientific aim and scope, CME initiation method, and
physical effects included, thereby stressing the importance of fully 3-D
('4pi') spatial coverage.Comment: 14 pages plus references. Comments welcome. Accepted for publication
in Solar Physics (SUN-360 topical issue
Observation of hard scattering in photoproduction events with a large rapidity gap at HERA
Events with a large rapidity gap and total transverse energy greater than 5
GeV have been observed in quasi-real photoproduction at HERA with the ZEUS
detector. The distribution of these events as a function of the
centre of mass energy is consistent with diffractive scattering. For total
transverse energies above 12 GeV, the hadronic final states show predominantly
a two-jet structure with each jet having a transverse energy greater than 4
GeV. For the two-jet events, little energy flow is found outside the jets. This
observation is consistent with the hard scattering of a quasi-real photon with
a colourless object in the proton.Comment: 19 pages, latex, 4 figures appended as uuencoded fil
Observation of Events with an Energetic Forward Neutron in Deep Inelastic Scattering at HERA
In deep inelastic neutral current scattering of positrons and protons at the center of mass energy of 300 GeV, we observe, with the ZEUS detector, events with a high energy neutron produced at very small scattering angles with respect to the proton direction. The events constitute a fixed fraction of the deep inelastic, neutral current event sample independent of Bjorken x and Q2 in the range 3 · 10-4 \u3c xBJ \u3c 6 · 10-3 and 10 \u3c Q2 \u3c 100 GeV2
- …