8 research outputs found

    UV-induced dissociation of CH2BrI probed by intense femtosecond XUV pulses

    No full text
    The ultraviolet (UV)-induced dissociation and photofragmentation of gas-phase CH2BrI molecules induced by intense femtosecond extreme ultraviolet (XUV) pulses at three different photon energies are studied by multi-mass ion imaging. Using a UV-pump — XUV-probe scheme, charge transfer between highly charged iodine ions and neutral CH2Br radicals produced by C—I bond cleavage is investigated. In earlier charge-transfer studies, the center of mass of the molecules was located along the axis of the bond cleaved by the pump pulse. In the present case of CH2BrI, this is not the case, thus inducing a rotation of the fragment. We discuss the influence of the rotation on the charge transfer process using a classical over-the-barrier model. Our modeling suggests that, despite the fact that the dissociation is slower due to the rotational excitation, the critical interatomic distance for charge transfer is reached faster. Furthermore, we suggest that charge transfer during molecular fragmentation may be modulated in a complex way

    Coulomb-explosion imaging of concurrent photodissociation dynamics

    No full text
    The dynamics following laser-induced molecular photodissociation of gas-phase CH2BrI at 271.6 nm were investigated by time-resolved Coulomb-explosion imaging using intense near-IR femtosecond laser pulses. The observed delay-dependent photofragment momenta reveal that CH2BrI undergoes C-I cleavage, depositing 65.6% of the available energy into internal product states, and that absorption of a second UV photon breaks the C-Br bond of CH2Br. Simulations confirm that this mechanism is consistent with previous data recorded at 248 nm, demonstrating the sensitivity of Coulomb-explosion imaging as a real-time probe of chemical dynamics

    Time-resolved inner-shell photoelectron spectroscopy: From a bound molecule to an isolated atom

    No full text
    Due to its element and site specificity, inner-shell photoelectron spectroscopy is a widely used technique to probe the chemical structure of matter. Here, we show that time-resolved inner-shell photoelectron spectroscopy can be employed to observe ultrafast chemical reactions and the electronic response to the nuclear motion with high sensitivity. The ultraviolet dissociation of iodomethane ( CH 3 I ) is investigated by ionization above the iodine 4 d edge, using time-resolved inner-shell photoelectron and photoion spectroscopy. The dynamics observed in the photoelectron spectra appear earlier and are faster than those seen in the iodine fragments. The experimental results are interpreted using crystal-field and spin-orbit configuration interaction calculations, and demonstrate that time-resolved inner-shell photoelectron spectroscopy is a powerful tool to directly track ultrafast structural and electronic transformations in gas-phase molecules

    Modified polysulfones. VI. Preparation of polymer membrane materials containing benzimine and benzylamine groups as precursors for molecularly imprinted sensor devices

    Get PDF
    A modified polysulfone containing benzylamine groups was synthesized as a reactive membrane material. Polysulfone was activated at the ortho-sulfone site by direct lithiation with n-butyllithium, and the resulting lithiated polysulfone was then reacted with benzonitrile; this yielded a polymer with pendant benzimine groups. The structure was confirmed by NMR and IR spectroscopy and by the transformation of imine to ketone by acid hydrolysis. The polymeric benzimine was also reduced to benzylamine with sodium cyanoborohydride in an acidic medium. The structure and degree of substitution of both benzylamine derivatives were determined by NMR and IR spectroscopy. The modified polysulfone containing benzylamine groups initiated the polymerization of N-carboxyanhydride of gamma-benzyl-L-glutamate [Glu(OBzl)-NCA]. The side-chain oligopeptide of Glu(OBzl)-NCA attached to polysulfone was converted into molecular recognition sites.NRC publication: Ye
    corecore