462 research outputs found
Generating and Adapting to Diverse Ad-Hoc Cooperation Agents in Hanabi
Hanabi is a cooperative game that brings the problem of modeling other
players to the forefront. In this game, coordinated groups of players can
leverage pre-established conventions to great effect, but playing in an ad-hoc
setting requires agents to adapt to its partner's strategies with no previous
coordination. Evaluating an agent in this setting requires a diverse population
of potential partners, but so far, the behavioral diversity of agents has not
been considered in a systematic way. This paper proposes Quality Diversity
algorithms as a promising class of algorithms to generate diverse populations
for this purpose, and generates a population of diverse Hanabi agents using
MAP-Elites. We also postulate that agents can benefit from a diverse population
during training and implement a simple "meta-strategy" for adapting to an
agent's perceived behavioral niche. We show this meta-strategy can work better
than generalist strategies even outside the population it was trained with if
its partner's behavioral niche can be correctly inferred, but in practice a
partner's behavior depends and interferes with the meta-agent's own behavior,
suggesting an avenue for future research in characterizing another agent's
behavior during gameplay.Comment: arXiv admin note: text overlap with arXiv:1907.0384
Large Language and Text-to-3D Models for Engineering Design Optimization
The current advances in generative AI for learning large neural network
models with the capability to produce essays, images, music and even 3D assets
from text prompts create opportunities for a manifold of disciplines. In the
present paper, we study the potential of deep text-to-3D models in the
engineering domain, with focus on the chances and challenges when integrating
and interacting with 3D assets in computational simulation-based design
optimization. In contrast to traditional design optimization of 3D geometries
that often searches for the optimum designs using numerical representations,
such as B-Spline surface or deformation parameters in vehicle aerodynamic
optimization, natural language challenges the optimization framework by
requiring a different interpretation of variation operators while at the same
time may ease and motivate the human user interaction. Here, we propose and
realize a fully automated evolutionary design optimization framework using
Shap-E, a recently published text-to-3D asset network by OpenAI, in the context
of aerodynamic vehicle optimization. For representing text prompts in the
evolutionary optimization, we evaluate (a) a bag-of-words approach based on
prompt templates and Wordnet samples, and (b) a tokenisation approach based on
prompt templates and the byte pair encoding method from GPT4. Our main findings
from the optimizations indicate that, first, it is important to ensure that the
designs generated from prompts are within the object class of application, i.e.
diverse and novel designs need to be realistic, and, second, that more research
is required to develop methods where the strength of text prompt variations and
the resulting variations of the 3D designs share causal relations to some
degree to improve the optimization.Comment: 9 pages, 13 figures, IEEE conference templat
Information transfer by vector spin chirality in finite magnetic chains
Vector spin chirality is one of the fundamental characteristics of complex
magnets. For a one-dimensional spin-spiral state it can be interpreted as the
handedness, or rotational sense of the spiral. Here, using spin-polarized
scanning tunneling microscopy, we demonstrate the occurrence of an atomic-scale
spin-spiral in finite individual bi-atomic Fe chains on the (5x1)-Ir(001)
surface. We show that the broken inversion symmetry at the surface promotes one
direction of the vector spin chirality, leading to a unique rotational sense of
the spiral in all chains. Correspondingly, changes in the spin direction of one
chain end can be probed tens of nanometers away, suggesting a new way of
transmitting information about the state of magnetic objects on the nanoscale.Comment: accepted by Physical Review Letter
- …