209 research outputs found
Recommended from our members
Multitemporal Fusion for the Detection of Static Spatial Patterns in Multispectral Satellite Images--with Application to Archaeological Survey
We evaluate and further develop a multitemporal fusion strategy that we use to detect the location of ancient settlement sites in the Near East and to map their distribution, a spatial pattern that remains static over time. For each ASTER images that has been acquired in our survey area in north-eastern Syria, we use a pattern classification strategy to map locations with a multispectral signal similar to the one from (few) known archaeological sites nearby. We obtain maps indicating the presence of anthrosol – soils that formed in the location of ancient settlements and that have a distinct spectral pattern under certain environmental conditions – and find that pooling the probability maps from all available time points reduces the variance of the spatial anthrosol pattern significantly. Removing biased classification maps – i.e. those that rank last when comparing the probability maps with the (limited) ground truth we have – reduces the overall prediction error even further, and we estimate optimal weights for each image using a non-negative least squares regression strategy. The ranking and pooling strategy approach we propose in this study shows a significant improvement over the plain averaging of anthrosol probability maps that we used in an earlier attempt to map archaeological sites in a 20,000 km2 area in northern Mesopotamia, and we expect it to work well in other surveying tasks that aim at mapping static surface patterns with limited ground truth in long series of multispectral images.Anthropolog
QU-BraTS: MICCAI BraTS 2020 Challenge on Quantifying Uncertainty in Brain Tumor Segmentation - Analysis of Ranking Scores and Benchmarking Results
Deep learning (DL) models have provided state-of-the-art performance in various medical imaging benchmarking challenges, including the Brain Tumor Segmentation (BraTS) challenges. However, the task of focal pathology multi-compartment segmentation (e.g., tumor and lesion sub-regions) is particularly challenging, and potential errors hinder translating DL models into clinical workflows. Quantifying the reliability of DL model predictions in the form of uncertainties could enable clinical review of the most uncertain regions, thereby building trust and paving the way toward clinical translation. Several uncertainty estimation methods have recently been introduced for DL medical image segmentation tasks. Developing scores to evaluate and compare the performance of uncertainty measures will assist the end-user in making more informed decisions. In this study, we explore and evaluate a score developed during the BraTS 2019 and BraTS 2020 task on uncertainty quantification (QU-BraTS) and designed to assess and rank uncertainty estimates for brain tumor multi-compartment segmentation. This score (1) rewards uncertainty estimates that produce high confidence in correct assertions and those that assign low confidence levels at incorrect assertions, and (2) penalizes uncertainty measures that lead to a higher percentage of under-confident correct assertions. We further benchmark the segmentation uncertainties generated by 14 independent participating teams of QU-BraTS 2020, all of which also participated in the main BraTS segmentation task. Overall, our findings confirm the importance and complementary value that uncertainty estimates provide to segmentation algorithms, highlighting the need for uncertainty quantification in medical image analyses. Finally, in favor of transparency and reproducibility, our evaluation code is made publicly available at: this https URL
Efficient Algorithms for Moral Lineage Tracing
Lineage tracing, the joint segmentation and tracking of living cells as they
move and divide in a sequence of light microscopy images, is a challenging
task. Jug et al. have proposed a mathematical abstraction of this task, the
moral lineage tracing problem (MLTP), whose feasible solutions define both a
segmentation of every image and a lineage forest of cells. Their branch-and-cut
algorithm, however, is prone to many cuts and slow convergence for large
instances. To address this problem, we make three contributions: (i) we devise
the first efficient primal feasible local search algorithms for the MLTP, (ii)
we improve the branch-and-cut algorithm by separating tighter cutting planes
and by incorporating our primal algorithms, (iii) we show in experiments that
our algorithms find accurate solutions on the problem instances of Jug et al.
and scale to larger instances, leveraging moral lineage tracing to practical
significance.Comment: Accepted at ICCV 201
Spatio-Temporal Video Segmentation with Shape Growth or Shrinkage Constraint
We propose a new method for joint segmentation of monotonously growing or shrinking shapes in a time sequence of noisy images. The task of segmenting the image time series is expressed as an optimization problem using the spatio-temporal graph of pixels, in which we are able to impose the constraint of shape growth or of shrinkage by introducing monodirectional infinite links connecting pixels at the same spatial locations in successive image frames. The globally optimal solution is computed with a graph cut. The performance of the proposed method is validated on three applications: segmentation of melting sea ice floes and of growing burned areas from time series of 2D satellite images, and segmentation of a growing brain tumor from sequences of 3D medical scans. In the latter application, we impose an additional intersequences inclusion constraint by adding directed infinite links between pixels of dependent image structures
Detecting CTP Truncation Artifacts in Acute Stroke Imaging from the Arterial Input and the Vascular Output Functions
Background Current guidelines for CT perfusion (CTP) in acute stroke suggest acquiring scans with a minimal duration of 60-70 s. But even then, CTP analysis can be affected by truncation artifacts. Conversely, shorter acquisitions are still widely used in clinical practice and are usually sufficient to reliably estimate lesion volumes. We aim to devise an automatic method that detects scans affected by truncation artifacts.
Methods Shorter scan durations are simulated from the ISLES’18 dataset by consecutively removing the last CTP time-point until reaching a 10 s duration. For each truncated series, perfusion lesion volumes are quantified and used to label the series as unreliable if the lesion volumes considerably deviate from the original untruncated ones. Afterwards, nine features from the arterial input function (AIF) and the vascular output function (VOF) are derived and used to fit machine-learning models with the goal of detecting unreliably truncated scans. Methods are compared against a baseline classifier solely based on the scan duration, which is the current clinical standard. The ROC-AUC, precision-recall AUC and the F1-score are measured in a 5-fold cross-validation setting.
Results Machine learning models obtained high performance, with a ROC-AUC of 0.964 and precision-recall AUC of 0.958 for the best performing classifier. The highest detection rate is obtained with support vector machines (F1-score = 0.913). The most important feature is the AIFcoverage, measured as the time difference between the scan duration and the AIF peak. In comparison, the baseline classifier yielded a lower performance of 0.940 ROC-AUC and 0.933 precision-recall AUC. At the 60-second cutoff, the baseline classifier obtained a low detection of unreliably truncated scans (F1-Score = 0.638).
Conclusions Machine learning models fed with discriminant AIF and VOF features accurately detected unreliable stroke lesion measurements due to insufficient acquisition duration. Unlike the 60s scan duration criterion, the devised models are robust to variable contrast injection and CTP acquisition protocols and could hence be used for quality assurance in CTP post-processing software
Focused Decoding Enables 3D Anatomical Detection by Transformers
Detection Transformers represent end-to-end object detection approaches based on a Transformer encoder-decoder architecture, exploiting the attention mechanism for global relation modeling. Although Detection Transformers deliver results on par with or even superior to their highly optimized CNN-based counterparts operating on 2D natural images, their success is closely coupled to access to a vast amount of training data. This, however, restricts the feasibility of employing Detection Transformers in the medical domain, as access to annotated data is typically limited. To tackle this issue and facilitate the advent of medical Detection Transformers, we propose a novel Detection Transformer for 3D anatomical structure detection, dubbed Focused Decoder. Focused Decoder leverages information from an anatomical region atlas to simultaneously deploy query anchors and restrict the cross-attention's field of view to regions of interest, which allows for a precise focus on relevant anatomical structures. We evaluate our proposed approach on two publicly available CT datasets and demonstrate that Focused Decoder not only provides strong detection results and thus alleviates the need for a vast amount of annotated data but also exhibits exceptional and highly intuitive explainability of results via attention weights. Code for Focused Decoder is available in our medical Vision Transformer library this http URL
- …