108 research outputs found

    Band Gap Engineering via Doping: A Predictive Approach

    Get PDF
    We employ an extension of Harrison\u27s theory at the tight binding level of approximation to develop a predictive approach for band gap engineering involving isovalent doping of wide band gap semiconductors. Our results indicate that reasonably accurate predictions can be achieved at qualitative as well as quantitative levels. The predictive results were checked against ab initio ones obtained at the level of DFT/SGGA + U approximation. The minor disagreements between predicted and ab initio results can be attributed to the electronic processes not incorporated in Harrison\u27s theory. These include processes such as the conduction band anticrossing [Shan et al., Phys. Rev. Lett. 82, 1221 (1999); Walukiewicz et al., Phys. Rev. Lett. 85, 1552 (2000)] and valence band anticrossing [Alberi et al., Phys. Rev. B 77, 073202 (2008); Appl. Phys. Lett. 92, 162105 (2008); Appl. Phys. Lett. 91, 051909 (2007); Phys. Rev. B 75, 045203 (2007)], as well as the multiorbital rehybridization. Another cause of disagreement between the results of our predictive approach and the ab initio ones is shown to be the result of the shift of Fermi energy within the impurity band formed at the edge of the valence band maximum due to rehybridization. The validity of our approach is demonstrated with example applications for the systems GaN1− x Sbx , GaP1− x Sbx , AlSb1− x Px , AlP1− xSbx , and InP1− xSbx

    Tunable Magnetic Properties of Transition Metal Doped MoS\u3csub\u3e2\u3c/sub\u3e

    Get PDF
    We report a detailed investigation of the electronic and magnetic properties of the transition metal (TM) doped two-dimensional (2D) MoS2 using ab initio calculations. The doping is achieved by substituting two or more Mo atoms by TM atoms of the 3d series. Additionally, the effect of codoping on the 2D MoS2 by cation-cation and cation-anion pairs is also investigated. Our results demonstrate that the TM doping of 2D MoS2 leads to a significant reduction of the energy gap and the appearance of magnetic features whose major characteristic is the ferromagnetic coupling of the TM dopants. The latter is found to be significantly enhanced by codoping as demonstrated by codoping with (Co,Cu), (Ni,Cu), (Mn,Cu), and (Mn,Sb) codopant pairs

    Magnetism in Non-Traditional Materials

    Full text link
    We performed a systematic microscopic investigation of two completely dissimilar materials (namely, ZnO and rhombohedral-C{sub 60} polymers) exhibiting ferromagnetism in the presence of defects, and showed that this new phenomena has a common origin and the mechanism responsible can be used as a powerful tool for inducing and tailoring magnetic features in systems which are not magnetic otherwise. Based on our findings we proposed a general recipe for developing ferromagnetism in new materials of great technological interest. Our results support the role of complimentary pairs of defects in inducing magnetism in otherwise non-magnetic materials belonging to two widely differing classes with no apparent correlation between them. In both classes, ferromagnetism is found to be enhanced when the two kinds of defects form structures (pathways) of alternating effective donor and acceptor crystal sites leading to the development of electron charge and spin density like waves. Using ab initio density functional theory calculations we predicted the existence of a new class of carbon cages formed via hybrid connection between planar graphene sheets and carbon nanotubes. The resulting novel structure has the appearance of ?nano-drum? and offers the exciting prospect of integrating useful device properties of both graphene as well as the nanotube into a single unit with tunable electronic properties. Creation of a hexagonal hole in the graphene portion of this structure results in significant magnetic moments for the edge atoms. The structure appears to be capable of sustaining ferrimagnetic state with the assistance of topological defects. The charge and spin distributions obtained in our calculations for the nano-drums are in striking contrast to those in planar graphene nanoribbons with a central hole. In this case, the central hole appears as the complimentary defect to those of the ribbon edges. Similar situation is found in case of the nano-drum in which the complimentary to the hole defects appear to be the pentagons along the curved surface of the drum. Charge oscillations found in the nano-drum are minimized in the nanoribbons. But more importantly, the hole edge atoms in the nano-drums retain significant magnetic moments; almost twice those of the corresponding ones in hydrogenated graphene nanoribbons (H-GNRs). These results suggest that the topological defects in the nano-drums may act like blocks to keep magnetic moments from ?leaking? out from the hole defects. This may have significant implications for the the use of nano-drums in magnetic storage technology where the ratio, magnetic-moment/weight, is of paramount importance in any futuristic device applications. One of the basic problems of the DFT/LSDA+U theory is the efficient evaluation of the U-term. With this in mind we proposed an alternative approach for its calculation which is based on the knowledge of the Hartree-Fock wave functions of the system under consideration. As a result, the proposed approach is closer to the basic definition of the DFT/LSDA+U scheme and its hybrid-DFT nature. According to our approach, the U value is obtained in a consistent and ab-initio way using the self-consistently calculated wave functions of the given system at the level of the HF approximation. Our method is applicable for systems which include more than one type of elements with localized d-orbitals. The method has been applied the case of the doped Zn(Co)O systems successfully. Currently, theories based on conventional superexchange or double-exchange interactions cannot explain long range magnetic order at concentrations below percolation threshold in dilute magnetic semiconductors. On the other hand, the codoping induced magnetism, which can justify magnetic interactions below percolation threshold, has eluded explanation. With this in mind, we proposed that defect-induced magnetism in codoped non-magnetic materials can be viewed within a molecular generalization of the atomic double-exchange and superexchange interactions applied to an arbitrary bipartite lattice hosted by (or embedded in) defect-free non-magnetic materials. In this view, the crucial factor for the development of magnetism appears to be the defect-complementarity of the codopants. We demonstrated this by taking ZnO and GaN (the most widely studied ferromagnetic oxide and nitride, respectively) as host materials and performing theoretical calculations using ab initio methods after codoping them with transition metal impurities for a variety of configurations. Our results indicate that the magnetic coupling among the induced and/or doped magnetic moments takes the form of an interaction among spin polarized molecular units which is facilitated by the formation of the hosted bipartite codopant structures. The universality of the proposed mechanism is further supported by earlier results referring to the rhombohedral C{sub 60}-based polymer

    Prediction of a New Graphenelike Si\u3csub\u3e2\u3c/sub\u3e BN Solid

    Get PDF
    While the possibility to create a single-atom-thick two-dimensional layer from any material remains, only a few such structures have been obtained other than graphene and a monolayer of boron nitride. Here, based upon ab initio theoretical simulations, we propose a new stable graphenelike single-atomic-layer Si2 BN structure that has all of its atoms with sp2 bonding with no out-of-plane buckling. The structure is found to be metallic with a finite density of states at the Fermi level. This structure can be rolled into nanotubes in a manner similar to graphene. Combining first- and second-row elements in the Periodic Table to form a one-atom-thick material that is also flat opens up the possibility for studying new physics beyond graphene. The presence of Si will make the surface more reactive and therefore a promising candidate for hydrogen storage

    Switching and Rectification in Carbon-Nanotube Junctions

    Get PDF
    Multi-terminal carbon-nanotube junctions are under investigation as candidate components of nanoscale electronic devices and circuits. Three-terminal "Y" junctions of carbon nanotubes (see Figure 1) have proven to be especially interesting because (1) it is now possible to synthesize them in high yield in a controlled manner and (2) results of preliminary experimental and theoretical studies suggest that such junctions could exhibit switching and rectification properties. Following the preliminary studies, current-versus-voltage characteristics of a number of different "Y" junctions of single-wall carbon nanotubes connected to metal wires were computed. Both semiconducting and metallic nanotubes of various chiralities were considered. Most of the junctions considered were symmetric. These computations involved modeling of the quantum electrical conductivity of the carbon nanotubes and junctions, taking account of such complicating factors as the topological defects (pentagons, heptagons, and octagons) present in the hexagonal molecular structures at the junctions, and the effects of the nanotube/wire interfaces. A major component of the computational approach was the use of an efficient Green s function embedding scheme. The results of these computations showed that symmetric junctions could be expected to support both rectification and switching. The results also showed that rectification and switching properties of a junction could be expected to depend strongly on its symmetry and, to a lesser degree, on the chirality of the nanotubes. In particular, it was found that a zigzag nanotube branching at a symmetric "Y" junction could exhibit either perfect rectification or partial rectification (asymmetric current-versus-voltage characteristic, as in the example of Figure 2). It was also found that an asymmetric "Y" junction would not exhibit rectification

    A rare case of follicular lymphoma transformed to a high-grade B-cell lymphoma in orbit

    Get PDF
    Transformation of lymphoma is an infrequent phenomenon, and involvement of the eye as such is even uncommon. Histological transformation in patients with follicular lymphoma who were previously treated with immune-chemotherapy carry a poor outcome. Here, we illustrate such a case with aggressive histological transformation from a low-grade lymphoma

    Photoelectrochemical Cell Including Ga(Sb\u3csub\u3ex\u3c/sub\u3e)N\u3csub\u3e1-x\u3c/sub\u3e Semiconductor Electrode

    Get PDF
    The composition of matter comprising Ga(Sbx)N1−x where x=0.01 to 0.06 is characterized by a band gap between 2.4 and 1.7 eV. A semiconductor device includes a semiconductor layer of that composition. A photoelectric cell includes that semiconductor device

    Synergistic Interactions of H\u3csub\u3e2\u3c/sub\u3e and N\u3csub\u3e2\u3c/sub\u3e with Molten Gallium in the Presence of Plasma

    Get PDF
    The present study examines the interaction of hydrogen and nitrogen plasmas with gallium in an effort to gain insights into the mechanisms behind the synergetic effect of plasma and a catalytic metal. Absorption/desorption experiments were performed, accompanied by theoretical-computational calculations. Experiments were carried out in a plasma-enhanced, Ga-packed, batch reactor and entailed monitoring the change in pressure at different temperatures. The results indicated a rapid adsorption/dissolution of the gas into the molten metal when gallium was exposed to plasma, even at a low temperature of 100 °C. The experimental observations, when hydrogen was used, indicate that gallium acts as a hydrogen sink in the presence of plasma. Similar results were obtained with Ga in the presence of nitrogen plasma. In addition, density functional theory calculations suggest a strong interaction between atomic hydrogen and molten gallium. This interaction is described as a high formation of Ga-H species on the surface, fast diffusion inside the metal, and a steady state concentration of the gas in the bulk
    • …
    corecore