1,057 research outputs found

    Receiver-Initiated Handshaking MAC Based on Traffic Estimation for Underwater Sensor Networks

    Full text link
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However,the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-basedreceiver-initiated MAC(TERI-MAC)to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    Receiver-Initiated Handshaking MAC Based On Traffic Estimation for Underwater Sensor Networks

    Get PDF
    In underwater sensor networks (UWSNs), the unique characteristics of acoustic channels have posed great challenges for the design of medium access control (MAC) protocols. The long propagation delay problem has been widely explored in recent literature. However, the long preamble problem with acoustic modems revealed in real experiments brings new challenges to underwater MAC design. The overhead of control messages in handshaking-based protocols becomes significant due to the long preamble in underwater acoustic modems. To address this problem, we advocate the receiver-initiated handshaking method with parallel reservation to improve the handshaking efficiency. Despite some existing works along this direction, the data polling problem is still an open issue. Without knowing the status of senders, the receiver faces two challenges for efficient data polling: when to poll data from the sender and how much data to request. In this paper, we propose a traffic estimation-based receiver-initiated MAC (TERI-MAC) to solve this problem with an adaptive approach. Data polling in TERI-MAC depends on an online approximation of traffic distribution. It estimates the energy efficiency and network latency and starts the data request only when the preferred performance can be achieved. TERI-MAC can achieve a stable energy efficiency with arbitrary network traffic patterns. For traffic estimation, we employ a resampling technique to keep a small computation and memory overhead. The performance of TERI-MAC in terms of energy efficiency, channel utilization, and communication latency is verified in simulations. Our results show that, compared with existing receiver-initiated-based underwater MAC protocols, TERI-MAC can achieve higher energy efficiency at the price of a delay penalty. This confirms the strength of TERI-MAC for delay-tolerant applications

    10-й ювілей Центру менеджменту та маркетингу в галузі наук про землю ІГН НАН України

    Get PDF
    17 грудня 2009 р. виповнилось 10 років з дня заснування науково-дослідної та інформаційно-організаційної структури НАН України — Центру менеджменту та маркетингу в галузі наук про Землю Інституту геологічних наук (ЦММ ІГН)

    Mesoporous nano Ni-Al2O3 catalyst for CO2 methanation in a continuously stirred tank reactor

    Get PDF
    Mesoporous nano Ni-Al2O3 catalysts were prepared by using Pluronic P123 (P123) and fatty alcohol polyoxyethylene ether (AEO-7) as structure directing agents (SDAs), and applied for CO2 methanation in a continuously stirred tank reactor (CSTR). Compared with NiAl-A prepared by using AEO-7 as SDA and NiAl-N without SDA, NiAl-P prepared by using P123 as SDA possesses ordered mesopores, high Ni dispersion, large metal surface area and amounts of adsorbed CO2, which benefits CO2 conversion. Under the conditions of 1.0 MPa, 300 °C and H2/CO2 ratio of 4, NiAl-P shows the highest CO2 conversion of 74.0% and CH4 yield of 73.6%

    Impacts of booming economic growth and urbanization on carbon dioxide emissions in Chinese megalopolises over 1985–2010: an index decomposition analysis

    Get PDF
    Given the booming economic growth and urbanization in China, cities have become crucial to sustaining this development and curbing national emissions. Understanding the key drivers underlying the rapid emissions growth is critical to providing local solutions for national climate targets. By using index decomposition analysis, we explore the factors contributing to the carbon dioxide (CO2) emissions in Chinese megalopolises from 1985 to 2010. An additional decomposition analysis of the industry sector is performed because of its dominant contribution to the total emissions. The booming economy and expanding urban areas are the major drivers to the increasing CO2 emissions in Chinese megalopolises over the examined period. The significant improvement in energy intensity is the primary factor for reducing CO2 emissions, the declining trend of which, however, has been suspended or reversed since 2000. The decoupling effect of the adjustments in the economic structure only occurred in three megalopolises, namely, the Yangtze River Delta (YRD), the Beijing-Tianjin-Heibei Megalopolis (BTJ), and the Pearl River Delta (PRD). In comparison, the impacts of urban density and carbon intensity are relatively marginal. The further disaggregated decomposition analysis in the industry sector shows that energy intensity improvements were widely achieved in 36 sub-industries in the PRD. The results also indicate the concentrations of energy-intensive industries in the PRD, posing a major challenge to local governments for a low-carbon economy. As economic growth and urbanization continue, reductions in energy intensity and clean energy therefore warrant much more policy attentions due to their crucial roles in reducing carbon emissions and satisfying the energy demand

    The combination of Paclitaxel and Gefitinib inhibits endometrial cancer cells by inducing mitotic catastrophe: proof of principle for dual therapy in endometrial cancer

    Get PDF
    Serous uterine endometrial cancer is a lethal disease for which new therapeutic regimens are urgently needed. Combinations of chemotherapeutic agents and small molecule growth factor inhibitors have demonstrated activity in cancers from other sites. Our objective was to determine whether such a combination using Paclitaxel and Gefitinib could be active in serous endometrial cancer cells

    An observational and Mendelian randomisation study on vitamin D and COVID-19 risk in UK Biobank

    Get PDF
    A growing body of evidence suggests that vitamin D deficiency has been associated with an increased susceptibility to viral and bacterial respiratory infections. In this study, we aimed to examine the association between vitamin D and COVID-19 risk and outcomes. We used logistic regression to identify associations between vitamin D variables and COVID-19 (risk of infection, hospitalisation and death) in 417,342 participants from UK Biobank. We subsequently performed a Mendelian Randomisation (MR) study to look for evidence of a causal effect. In total, 1746 COVID-19 cases (399 deaths) were registered between March and June 2020. We found no significant associations between COVID-19 infection risk and measured 25-OHD levels after adjusted for covariates, but this finding is limited by the fact that the vitamin D levels were measured on average 11 years before the pandemic. Ambient UVB was strongly and inversely associated with COVID-19 hospitalization and death overall and consistently after stratification by BMI and ethnicity. We also observed an interaction that suggested greater protective effect of genetically-predicted vitamin D levels when ambient UVB radiation is stronger. The main MR analysis did not show that genetically-predicted vitamin D levels are causally associated with COVID-19 risk (OR = 0.77, 95% CI 0.55–1.11, P = 0.160), but MR sensitivity analyses indicated a potential causal effect (weighted mode MR: OR = 0.72, 95% CI 0.55–0.95, P = 0.021; weighted median MR: OR = 0.61, 95% CI 0.42–0.92, P = 0.016). Analysis of MR-PRESSO did not find outliers for any instrumental variables and suggested a potential causal effect (OR = 0.80, 95% CI 0.66–0.98, p-val = 0.030). In conclusion, the effect of vitamin D levels on the risk or severity of COVID-19 remains controversial, further studies are needed to validate vitamin D supplementation as a means of protecting against worsened COVID-19

    Intranasal Immunization with Recombinant HA and Mast Cell Activator C48/80 Elicits Protective Immunity against 2009 Pandemic H1N1 Influenza in Mice

    Get PDF
    Pandemic influenza represents a major threat to global health. Vaccination is the most economic and effective strategy to control influenza pandemic. Conventional vaccine approach, despite being effective, has a number of major deficiencies including limited range of protection, total dependence on embryonated eggs for production, and time consuming for vaccine production. There is an urgent need to develop novel vaccine strategies to overcome these deficiencies.The major objective of this work was to develop a novel vaccine strategy combining recombinant haemagglutinin (HA) protein and a master cell (MC) activator C48/80 for intranasal immunization. We demonstrated in BALB/c mice that MC activator C48/80 had strong adjuvant activity when co-administered with recombinant HA protein intranasally. Vaccination with C48/80 significantly increased the serum IgG and mucosal surface IgA antibody responses against HA protein. Such increases correlated with stronger and durable neutralizing antibody activities, offering protection to vaccinated animals from disease progression after challenge with lethal dose of A/California/04/2009 live virus. Furthermore, protected animals demonstrated significant reduction in lung virus titers, minimal structural alteration in lung tissues as well as higher and balanced production of Th1 and Th2 cytokines in the stimulated splenocytes when compared to those without C48/80.The present study demonstrates that the novel vaccine approach of combining recombinant HA and mucosal adjuvant C48/80 is safe and effective in eliciting protective immunity in mice. Future studies on the mechanism of action of C48/80 and potential combination with other vaccine strategies such as prime and boost approach may help to induce even more potent and broad immune responses against viruses from various clades
    corecore