113 research outputs found
A single amino acid substitution in hypervariable region 5 of the envelope protein of feline immunodeficiency virus allows escape from virus neutralization.
We infected a specific-pathogen-free cat (cat 14) with molecularly cloned feline immunodeficiency virus clone 19k1 (FIV19k1 [K. H. J. Siebelink, I. Chu, G. F. Rimmelzwaan, K. Weijer, A. D. M. E. Osterhaus, and M. L. Bosch, J. Virol. 66:1091-1097, 1992]). Serum of this cat obtained 22 weeks postinfection (serum 1422) neutralized FIV19k1 but not FIV19k32, which is 99.3% identical to FIV19k1 in the envel
First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs.
A synthetic peptide vaccine which protects dogs against challenge with virulent canine parvovirus is described. The amino acid sequence used was discovered in previous studies on the immunogenic properties of previously mapped antigenic sites and represents the amino-terminal region of viral protein VP2. As with marker vaccines, it is possible to discriminate between vaccinated dogs that have not been exposed to the virus and dogs that have been infected with the virus. The protective mechanism can be explained by a humoral response against the peptide aided by T-cell epitopes contained in the carrier protein used for peptide coupling. This is the first example of a synthetic peptide vaccine that induces protection in target animals
First peptide vaccine providing protection against viral infection in the target animal: studies of canine parvovirus in dogs.
A synthetic peptide vaccine which protects dogs against challenge with virulent canine parvovirus is described. The amino acid sequence used was discovered in previous studies on the immunogenic properties of previously mapped antigenic sites and represents the amino-terminal region of viral protein VP2. As with marker vaccines, it is possible to discriminate between vaccinated dogs that have not been exposed to the virus and dogs that have been infected with the virus. The protective mechanism can be explained by a humoral response against the peptide aided by T-cell epitopes contained in the carrier protein used for peptide coupling. This is the first example of a synthetic peptide vaccine that induces protection in target animals
Proteasome inhibition and mechanism of resistance to a synthetic, library-based hexapeptide
Chemical Immunolog
Novel rabies virus-neutralizing epitope recognized by human monoclonal antibody: Fine mapping and escape mutant analysis
Anti-rabies virus immunoglobulin combined with rabies vaccine protects humans from lethal rabies infections. For cost and safety reasons, replacement of the human or equine polyclonal immunoglobulin is advocated, and the use of rabies virus-specific monoclonal antibodies (MAbs) is recommended. We produced two previously described potent rabies virus-neutralizing human MAbs, CR57 and CRJB, in human PER.C6 cells. The two MAbs competed for binding to rabies virus glycoprotein. Using CR57 and a set of 15-mer overlapping peptides covering the glycoprotein ectodomain, a neutralization domain was identified between amino acids (aa) 218 and 240. The minimal binding region was identified as KLCGVL (aa 226 to 231), with key residues K-CGV- identified by alanine replacement scanning. The critical binding region of this novel nonconformational rabies virus epitope is highly conserved within rabies viruses of genotype 1. Subsequently, we generated six rabies virus variants escaping neutralization by CR57 and six variants escaping CRJB. The CR57 escape mutants were only partially covered by CRJB, and all CRJB-resistant variants completely escaped neutralization by CR57. Without exception, the CR57-resistant variants showed a mutation at key residues within the defined minimal binding region, while the CRJB escape viruses showed a single mutation distant from the CR57 epitope (N182D) combined with mutations in the CR57 epitope. The competition between CR57 and CRJB, the in vitro escape profile, and the apparent overlap between the recognized epitopes argues against including both CR57 and CRJB in a MAb cocktail aimed at replacing classical immunoglobulin preparations
- …