1,004 research outputs found
Bureaus, Clients, and Congress: The Impact of Interest Group Support on Budgeting
Richard Fenno, in Power of the Purse, contends that the budget process responds to interest group pressures. This study examines that hypothesis for 20 bureaus in the Department of Agriculture for the fiscal years 1971-1976. Cultivating clientele support both among interest groups and members of Congress appears to aid a bureau's budget position. Bureaus with strong support not only avoid budget cuts but grow rapidly from year to year.Yeshttps://us.sagepub.com/en-us/nam/manuscript-submission-guideline
An Economic Analysis of Costs Associated with Development of a Cell Salvage Program
BACKGROUND: The increasing cost of blood products and associated risks of transfusion have lead to a heightened interest in techniques which reduce or replace allogeneic blood transfusion. The use of cell salvage is being explored in a number of institutions. We present financial information which may be useful to institutions that are considering the addition of a cell salvage service. METHODS: A review of the cell salvage data from 2328 patients was used to estimate the average cost of a packed red blood cell unit equivalent processed by cell salvage equipment. In addition, an analysis was performed to assess the break-even point of establishing a cell salvage service. RESULTS: Initial capital outlay to establish a cell salvage service at this institution was 250,943. The average cost of transfusion of an allogeneic packed red blood cell unit was 89.46. The payback period was 1.9 mo. CONCLUSION: This analysis suggests that cell salvage can be significantly less expensive than allogeneic blood. The cost of cell salvage in other institutions will vary depending upon case volume, expected levels of blood loss per case, and initial investment costs. A step-by-step formula is provided to assist in the evaluation of a cell salvage service in hospitals of various sizes
Compact jets as probes for sub-parsec scale regions in AGN
Compact relativistic jets in active galactic nuclei offer an effective tool
for investigating the physics of nuclear regions in galaxies. The emission
properties, dynamics, and evolution of jets in AGN are closely connected to the
characteristics of the central supermassive black hole, accretion disk and
broad-line region in active galaxies. Recent results from studies of the
nuclear regions in several active galaxies with prominent outflows are reviewed
in this contribution.Comment: AASLaTeX, 5 pages, 4 figures. Accepted in Astrophysics and Space
Scienc
Low Energy Analyzing Powers in Pion-Proton Elastic Scattering
Analyzing powers of pion-proton elastic scattering have been measured at PSI
with the Low Energy Pion Spectrometer LEPS as well as a novel polarized
scintillator target. Angular distributions between 40 and 120 deg (c.m.) were
taken at 45.2, 51.2, 57.2, 68.5, 77.2, and 87.2 MeV incoming pion kinetic
energy for pi+ p scattering, and at 67.3 and 87.2 MeV for pi- p scattering.
These new measurements constitute a substantial extension of the polarization
data base at low energies. Predictions from phase shift analyses are compared
with the experimental results, and deviations are observed at low energies.Comment: 15 pages, 4 figure
Extragalactic Relativistic Jets and Nuclear Regions in Galaxies
Past years have brought an increasingly wider recognition of the ubiquity of
relativistic outflows (jets) in galactic nuclei, which has turned jets into an
effective tool for investigating the physics of nuclear regions in galaxies. A
brief summary is given here of recent results from studies of jets and nuclear
regions in several active galaxies with prominent outflows.Comment: 5 pages; contribution to ESO Astrophysical Symposia, "Relativistic
Astrophysics and Cosmology", eds. B. Aschenbach, V. Burwitz, G. Hasinger, B.
Leibundgut (Springer: Heidelberg 2006
Multi-layered Ruthenium-modified Bond Coats for Thermal Barrier Coatings
Diffusional approaches for fabrication of multi-layered Ru-modified bond coats for thermal
barrier coatings have been developed via low activity chemical vapor deposition and high activity
pack aluminization. Both processes yield bond coats comprising two distinct B2 layers, based on
NiAl and RuAl, however, the position of these layers relative to the bond coat surface is reversed
when switching processes. The structural evolution of each coating at various stages of the
fabrication process has been and subsequent cyclic oxidation is presented, and the relevant
interdiffusion and phase equilibria issues in are discussed. Evaluation of the oxidation behavior of
these Ru-modified bond coat structures reveals that each B2 interlayer arrangement leads to the
formation of α-Al 2 O 3 TGO at 1100°C, but the durability of the TGO is somewhat different and in
need of further improvement in both cases
Input-output theory for fermions in an atom cavity
We generalize the quantum optical input-output theory developed for optical
cavities to ultracold fermionic atoms confined in a trapping potential, which
forms an "atom cavity". In order to account for the Pauli exclusion principle,
quantum Langevin equations for all cavity modes are derived. The dissipative
part of these multi-mode Langevin equations includes a coupling between cavity
modes. We also derive a set of boundary conditions for the Fermi field that
relate the output fields to the input fields and the field radiated by the
cavity. Starting from a constant uniform current of fermions incident on one
side of the cavity, we use the boundary conditions to calculate the occupation
numbers and current density for the fermions that are reflected and transmitted
by the cavity
Magnetization steps in a diluted Heisenberg antiferromagnetic chain: Theory and experiments on TMMC:Cd
A theory for the equilibrium low-temperature magnetization M of a diluted
Heisenberg antiferromagnetic chain is presented. The magnetization curve, M
versus B, is calculated using the exact contributions of finite chains with 1
to 5 spins, and the "rise and ramp approximation" for longer chains. Some
non-equilibrium effects that occur in a rapidly changing B, are also
considered. Specific non-equilibrium models based on earlier treatments of the
phonon bottleneck, and of spin flips associated with cross relaxation and with
level crossings, are discussed. Magnetization data on powders of TMMC diluted
with cadmium [i.e., (CH_3)_4NMn_xCd_(1-x)Cl_3, with 0.16<=x<=0.50 were measured
at 0.55 K in 18 T superconducting magnets. The field B_1 at the first MST from
pairs is used to determine the NN exchange constant, J, which changes from -5.9
K to -6.5 K as x increases from 0.16 to 0.50. The magnetization curves obtained
in the superconducting magnets are compared with simulations based on the
equilibrium theory. Data for the differential susceptibility, dM/dB, were taken
in pulsed magnetic fields (7.4 ms duration) up to 50 T, with the powder samples
in a 1.5 K liquid-helium bath. Non-equilibrium effects, which became more
severe as x decreased, were observed. The non-equilibrium effects are
tentatively interpreted using the "Inadequate Heat Flow Scenario," or to
cross-relaxation, and crossings of energy levels, including those of excited
states.Comment: 16 pages, 14 figure
Spallation reactions. A successful interplay between modeling and applications
The spallation reactions are a type of nuclear reaction which occur in space
by interaction of the cosmic rays with interstellar bodies. The first
spallation reactions induced with an accelerator took place in 1947 at the
Berkeley cyclotron (University of California) with 200 MeV deuterons and 400
MeV alpha beams. They highlighted the multiple emission of neutrons and charged
particles and the production of a large number of residual nuclei far different
from the target nuclei. The same year R. Serber describes the reaction in two
steps: a first and fast one with high-energy particle emission leading to an
excited remnant nucleus, and a second one, much slower, the de-excitation of
the remnant. In 2010 IAEA organized a worskhop to present the results of the
most widely used spallation codes within a benchmark of spallation models. If
one of the goals was to understand the deficiencies, if any, in each code, one
remarkable outcome points out the overall high-quality level of some models and
so the great improvements achieved since Serber. Particle transport codes can
then rely on such spallation models to treat the reactions between a light
particle and an atomic nucleus with energies spanning from few tens of MeV up
to some GeV. An overview of the spallation reactions modeling is presented in
order to point out the incomparable contribution of models based on basic
physics to numerous applications where such reactions occur. Validations or
benchmarks, which are necessary steps in the improvement process, are also
addressed, as well as the potential future domains of development. Spallation
reactions modeling is a representative case of continuous studies aiming at
understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie
- …