10 research outputs found

    A Multivariate Assessment of Climate Change Projections over South America Using the Fifth Phase of the Coupled Model Intercomparison Project

    No full text
    This study presents results from an assessment of climate change projections over South America using fifth phase of the Coupled Model Intercomparison Project models. Change in near‐surface temperature, precipitation, evapotranspiration, integrated water vapour transport (IVT), sea level pressure (SLP), and wind at three pressure levels is quantified across the multi‐model suite. Additionally, model agreement for the sign and significance of projected change is assessed within the ensemble. Models are in strong agreement that the highest magnitude of projected warming will be over tropical regions. The CMIP5 models project a decrease in precipitation for all seasons over southern South America, especially along the northern portions of the present‐day mid‐latitude storm track. This is consistent with a robustly projected poleward shift of the Pacific extratropical high‐pressure system and mid‐latitude storm track indicated by a systematic increase in SLP and decrease in westerly wind magnitude over the region. Decreased precipitation for the months of September, October, and November is also projected, with strong model agreement, over portions of northern and northeastern Brazil, coincident with decreases in SLP and increases in evapotranspiration. IVT is broadly projected to decrease over southern South America, coincident with the projected poleward shift of the mid‐latitude storm track, with increases projected in the vicinity of the South Atlantic Convergence Zone in spring and summer. Results provide a comprehensive picture of climate change across South America and highlight where model consensus on change is most robust

    Characterizing Monthly Temperature Variability States and Associated Meteorology Across Southern South America

    No full text
    Key spatiotemporal patterns of monthly scale temperature variability are characterized over southern South America using k‐means clustering. The resulting clusters reveal patterns of temperature variability, referred to as temperature variability states. Analysis is performed over summer and winter months separately using data covering the period 1980–2015. Results for both seasons show four primary temperature variability states. In both seasons, one state is primarily characterized by warm temperature anomalies across the domain while another is characterized by cold anomalies. The other two patterns tend to be characterized by a warm north–cold south and cold north–warm south feature. This suggests two primary modes of temperature variability over the region. Composites of synoptic‐scale meteorological patterns (wind, geopotential height, and moisture fields) are computed for months assigned to each cluster to diagnose the driving meteorology associated with these variability states. Results suggest that low‐level temperature advection promoted by anomalies in atmospheric circulation patterns is a key process for driving these variability states. Moisture‐related processes also are shown to play a role, especially in summer. The El Niño–Southern Oscillation and the Southern Annular Mode exhibit some relationship with temperature variability state frequency, with some states more common during amplified phases of these two modes than others. However, the climate modes are not a primary driver of the temperature variability states

    Relationships among Intermodel Spread and Biases in Tropical Atlantic Sea Surface Temperatures

    No full text
    State-of-the-art general circulation models show important systematic errors in their simulation of sea surface temperatures (SST), especially in the tropical Atlantic. In this work the spread in the simulation of climatological SST in the tropical Atlantic by 24 CMIP5 models is examined, and its relationship with the mean systematic biases in the region is explored. The modes of intermodel variability are estimated by applying principal component (PC) analysis to the SSTs in the region 70ÂșW–20ÂșE, 20ÂșS–20ÂșN. The intermodel variability is approximately explained by the first three modes. The first mode is related to warmer SSTs in the basin, shows worldwide connections with same-signed loads over most of the tropics, and is connected with lower low cloud cover over the eastern parts of the subtropical oceans. The second mode is restricted to the Atlantic, where it shows negative and positive loads to the north and south of the equator, respectively, and is connected to a too weak Atlantic meridional overturning circulation (AMOC). The third mode is related to the double intertropical convergence zone bias in the Pacific and to an interhemispheric asymmetry in the net radiation at the top of the atmosphere. The structure of the second mode is closer to the mean bias than that of the others in the tropical Atlantic, suggesting that model difficulties with the AMOC contribute to the regional biases. State-of-the-art general circulation models show important systematic errors in their simulation of sea surface tem- peratures (SST), especially in the tropical Atlantic. In this work the spread in the simulation of climatological SST in the tropical Atlantic by 24 CMIP5 models is examined, and its relationship with the mean systematic biases in the region is explored. The modes of intermodel variability are estimated by applying principal component (PC) analysis to the SSTs in the region 708W–208E, 208S–208N. The intermodel variability is approximately explained by the first three modes. The first mode is related to warmer SSTs in the basin, shows worldwide connections with same-signed loads over most of the tropics, and is connected with lower low cloud cover over the eastern parts of the subtropical oceans. The second mode is restricted to the Atlantic, where it shows negative and positive loads to the north and south of the equator, respectively, and is connected to a too weak Atlantic meridional overturning circulation (AMOC). The third mode is related to the double intertropical convergence zone bias in the Pacific and to an interhemispheric asymmetry in the net radiation at the top of the atmosphere. The structure of the second mode is closer to the mean bias than that of the others in the tropical Atlantic, suggesting that model difficulties with the AMOC contribute to the regional biases.European Union Seventh Framework Programme (FP7/2007-2013)Gobierno de EspañaNOAA's Climate Program Office, Climate Variability and Predictability ProgramJuan de la Cierva-Incorporacion ProgrammeDepto. de FĂ­sica de la Tierra y AstrofĂ­sicaFac. de Ciencias FĂ­sicasTRUEpu

    High Bit Rate Experiments Over ACTS

    No full text
    This paper describes two high data rate experiments chat are being developed for the gigabit NASA Advanced Communications Technology Satellite (ACTS). The first is a telescience experiment that remotely acquires image data at the Keck telescope from the Caltech campus. The second is a distributed global climate application that is run between two supercomputer centers interconnected by ACTS. The implementation approach for each is described along with the expected results. Also. the ACTS high data rate (HDR) ground station is also described in detail

    The Concordiasi Project in Antarctica

    No full text
    International audienceThe Concordiasi project is making innovative observations of the atmosphere above Antarctica. The most important goals of the Concordiasi are as follows: 1. To enhance the accuracy of weather prediction and climate records in Antarctica through the assimilation of in situ and satellite data, with an emphasis on data provided by hyperspectral infrared sounders. The focus is on clouds, precipitation, and the mass budget of the ice sheets. The improvements in dynamical model analyses and forecasts will be used in chemical-transport models that describe the links between the polar vortex dynamics and ozone depletion, and to advance the understanding of the Earth system by examining the interactions between Antarctica and lower latitudes. 2. To improve our understanding of microphysical and dynamical processes controlling the polar ozone, by providing the first quasi-Lagrangian observations of stratospheric ozone and particles, in addition to an improved characterization of the 3D polar vortex dynamics. Techniques for assimilating these Lagrangian observations are being developed. A major Concordiasi component is a field experiment during the austral springs of 2008-10. The field activities in 2010 are based on a constellation of up to 18 long-duration stratospheric super-pressure balloons (SPBs) deployed from the McMurdo station. Six of these balloons will carry GPS receivers and in situ instruments measuring temperature, pressure, ozone, and particles. Twelve of the balloons will release drop-sondes on demand for measuring atmospheric parameters. Lastly, radiosounding measurements are collected at various sites, including the Concordia station
    corecore