17,254 research outputs found

    Direct-write, focused ion beam-deposited,7 K superconducting C-Ga-O nanowire

    Full text link
    We have fabricated C-Ga-O nanowires by gallium focused ion beam-induced deposition from the carbon-based precursor phenanthrene. The electrical conductivity of the nanowires is weakly temperature dependent below 300 K, and indicates a transition to a superconducting state below Tc = 7 K. We have measured the temperature dependence of the upper critical field Hc2(T), and estimate a zero temperature critical field of 8.8 T. The Tc of this material is approximately 40% higher than that of any other direct write nanowire, such as those based on C-W-Ga, expanding the possibility of fabricating direct-write nanostructures that superconduct above liquid helium temperaturesComment: Accepted for AP

    HST imaging of hyperluminous infrared galaxies

    Full text link
    We present HST WFPC2 I band imaging for a sample of 9 Hyperluminous Infrared Galaxies spanning a redshift range 0.45 < z < 1.34. Three of the sample have morphologies showing evidence for interactions, six are QSOs. Host galaxies in the QSOs are reliably detected out to z ~ 0.8. The detected QSO host galaxies have an elliptical morphology with scalelengths spanning 6.5 < r_{e}(Kpc) < 88 and absolute k corrected magnitudes spanning -24.5 < M_{I} < -25.2. There is no clear correlation between the IR power source and the optical morphology. None of the sources in the sample, including F15307+3252, show any evidence for gravitational lensing. We infer that the IR luminosities are thus real. Based on these results, and previous studies of HLIRGs, we conclude that this class of object is broadly consistent with being a simple extrapolation of the ULIRG population to higher luminosities; ULIRGs being mainly violently interacting systems powered by starbursts and/or AGN. Only a small number of sources whose infrared luminosities exceed 10^{13}Lsun are intrinsically less luminous objects which have been boosted by gravitational lensing.Comment: 16 Pages. Accepted for publication in MNRA

    New Limits on the Polarized Anisotropy of the Cosmic Microwave Background at Subdegree Angular Scales

    Full text link
    We update the limit from the 90 GHz PIQUE ground-based polarimeter on the magnitude of any polarized anisotropy of the cosmic microwave radiation. With a second year of data, we have now limited both Q and U on a ring of 1 degree radius. The window functions are broad: for E-mode polarization, the effective l is = 191 +143 -132. We find that the E-mode signal can be no greater than 8.4 microK (95% CL), assuming no B-mode polarization. Limits on a possible B-mode signal are also presented.Comment: 4 pages, 3 figures, submitted to Astrophysical Journal Letter

    CENP-A Is Dispensable for Mitotic Centromere Function after Initial Centromere/Kinetochore Assembly

    Get PDF
    Human centromeres are defined by chromatin containing the histone H3 variant CENP-A assembled onto repetitive alphoid DNA sequences. By inducing rapid, complete degradation of endogenous CENP-A, we now demonstrate that once the first steps of centromere assembly have been completed in G1/S, continued CENP-A binding is not required for maintaining kinetochore attachment to centromeres or for centromere function in the next mitosis. Degradation of CENP-A prior to kinetochore assembly is found to block deposition of CENP-C and CENP-N, but not CENP-T, thereby producing defective kinetochores and failure of chromosome segregation. Without the continuing presence of CENP-A, CENP-B binding to alphoid DNA sequences becomes essential to preserve anchoring of CENP-C and the kinetochore to each centromere. Thus, there is a reciprocal interdependency of CENP-A chromatin and the underlying&nbsp;repetitive centromere DNA sequences bound by CENP-B in the maintenance of human chromosome segregation

    The Power Spectrum of the PSC Redshift Survey

    Get PDF
    We measure the redshift-space power spectrum P(k) for the recently completed IRAS Point Source Catalogue (PSC) redshift survey, which contains 14500 galaxies over 84% of the sky with 60 micron flux >= 0.6 Jansky. Comparison with simulations shows that our estimated errors on P(k) are realistic, and that systematic errors due to the finite survey volume are small for wavenumbers k >~ 0.03 h Mpc^-1. At large scales our power spectrum is intermediate between those of the earlier QDOT and 1.2 Jansky surveys, but with considerably smaller error bars; it falls slightly more steeply to smaller scales. We have fitted families of CDM-like models using the Peacock-Dodds formula for non-linear evolution; the results are somewhat sensitive to the assumed small-scale velocity dispersion \sigma_V. Assuming a realistic \sigma_V \approx 300 km/s yields a shape parameter \Gamma ~ 0.25 and normalisation b \sigma_8 ~ 0.75; if \sigma_V is as high as 600 km/s then \Gamma = 0.5 is only marginally excluded. There is little evidence for any `preferred scale' in the power spectrum or non-Gaussian behaviour in the distribution of large-scale power.Comment: Latex, uses mn.sty, 14 pages including 11 Postscript figures. Accepted by MNRA

    Bilateral Isokinetic Torque Differences in Trained Swimmers

    Get PDF
    Please view abstract in the attached PDF file

    Conformational Dependence of a Protein Kinase Phosphate Transfer Reaction

    Full text link
    Atomic motions and energetics for a phosphate transfer reaction catalyzed by the cAMP-dependent protein kinase (PKA) are calculated by plane-wave density functional theory, starting from structures of proteins crystallized in both the reactant conformation (RC) and the transition-state conformation (TC). In the TC, we calculate that the reactants and products are nearly isoenergetic with a 0.2 eV barrier; while phosphate transfer is unfavorable by over 1.2 eV in the RC, with an even higher barrier. With the protein in the TC, the motions involved in reaction are small, with only Pγ_\gamma and the catalytic proton moving more than 0.5 \AA. Examination of the structures reveals that in the RC the active site cleft is not completely closed and there is insufficient space for the phosphorylated serine residue in the product state. Together, these observations imply that the phosphate transfer reaction occurs rapidly and reversibly in a particular conformation of the protein, and that the reaction can be gated by changes of a few tenths of an \AA in the catalytic site.Comment: revtex4, 7 pages, 4 figures, to be submitted to Scienc
    • …
    corecore