51 research outputs found

    Molecular footprints reveal the impact of the protective HLA-A*03 allele in hepatitis C virus infection

    Get PDF
    Background and aims: CD8 T cells are central to the control of hepatitis C virus (HCV) although the key features of a successful CD8 T cell response remain to be defined. In a cohort of Irish women infected by a single source, a strong association between viral clearance and the human lecucocyte (HLA)-A*03 allele has been described, and the aim of this study was to define the protective nature of the associated CD8 T cell response. Methods: A sequence-led approach was used to identify HLA-A*03-restricted epitopes. We examine the CD8 T cell response associated with this gene and address the likely mechanism underpinning this protective effect in this special cohort, using viral sequencing, T cell assays and analysis of fitness of viral mutants. Results: A strong 'HLA footprint' in a novel NS3 epitope (TVYHGAGTK) was observed. A lysine (K) to arginine (R) substitution at position 9 (K1088R) was seen in a significant number of A*03-positive patients (9/12) compared with the control group (1/33, p=0.0003). Threonine (T) was also substituted with alanine (A) at position 8 (T1087A) more frequently in A*03-positive patients (6/12) compared with controls (2/33, p=0.01), and the double substitution of TK to AR was also observed predominantly in HLA-A*03- positive patients (p=0.004). Epitope-specific CD8 T cell responses were observed in 60% of patients three decades after exposure and the mutants selected in vivo impacted on recognition in vitro. Using HCV replicons matched to the viral sequences, viral fitness was found to be markedly reduced by the K1088R substitution but restored by the second substitution T1087A. Conclusions: It is proposed that at least part of the protective effect of HLA-A*03 results from targeting of this key epitope in a functional site: the requirement for two mutations to balance fitness and escape provides an initial host advantage. This study highlights the potential protective impact of common HLA-A alleles against persistent viruses, with important implications for HCV vaccine studies

    Regional hyperperfusion in cognitively normal APOE ε4 allele carriers in mid-life: analysis of ASL pilot data from the PREVENT-Dementia cohort

    Get PDF
    Background: Regional cerebral hypoperfusion is characteristic of Alzheimer’s disease (AD). Previous studies report conflicting findings in cognitively normal individuals at high risk of AD. Understanding early preclinical perfusion alterations may improve understanding of AD pathogenesis and lead to new biomarkers and treatment targets. Methods: 3T arterial spin labelling MRI scans from 162 participants in the PREVENT-Dementia cohort were analysed (cognitively normal participants aged 40–59, stratified by future dementia risk). Cerebral perfusion was compared vertex-wise according to APOE ε4 status and family history (FH). Correlations between individual perfusion, age and cognitive scores (COGNITO battery) were explored. Results: Regional hyperperfusion was found in APOE ε4+group (left cingulate and lateral frontal and parietal regions p<0.01, threshold-free cluster enhancement, TFCE) and in FH +group (left temporal and parietal regions p<0.01, TFCE). Perfusion did not correlate with cognitive test scores. Conclusions: Regional cerebral hyperperfusion in individuals at increased risk of AD in mid-life may be a very early marker of functional brain change related to AD. Increased perfusion may reflect a functional ‘compensation’ mechanism, offsetting the effects of early neural damage or may itself be risk factor for accelerating spread of degenerative pathology

    Evidence of cerebral hemodynamic dysregulation in middle-aged APOE ε4 carriers: The PREVENT-Dementia study.

    Get PDF
    Accumulating evidence suggests vascular dysregulation in preclinical Alzheimer's disease. In this study, cerebral hemodynamics and their coupling with cognition in middle-aged apolipoprotein ε4 carriers (APOEε4+) were investigated. Longitudinal 3 T T1-weighted and arterial spin labelling MRI data from 158 participants (40-59 years old) in the PREVENT-Dementia study were analysed (125 two-year follow-up). Cognition was evaluated using the COGNITO battery. Cerebral blood flow (CBF) and cerebrovascular resistance index (CVRi) were quantified for the flow territories of the anterior, middle and posterior cerebral arteries. CBF was corrected for underlying atrophy and individual hematocrit. Hemodynamic measures were the dependent variables in linear regression models, with age, sex, years of education and APOEε4 carriership as predictors. Further analyses were conducted with cognitive outcomes as dependent variables, using the same model as before with additional APOEε4 × hemodynamics interactions. At baseline, APOEε4+ showed increased CBF and decreased CVRi compared to non-carriers in the anterior and middle cerebral arteries, suggestive of potential vasodilation. Hemodynamic changes were similar between groups. Interaction analysis revealed positive associations between CBF changes and performance changes in delayed recall (for APOEε4 non-carriers) and verbal fluency (for APOEε4 carriers) cognitive tests. These observations are consistent with neurovascular dysregulation in middle-aged APOEε4+

    Investigating the brain’s neurochemical profile at midlife in relation to dementia risk factors

    Get PDF
    Changes in the brain’s physiology in Alzheimer’s disease are thought to occur early in the disease’s trajectory. In this study our aim was to investigate the brain’s neurochemical profile in a midlife cohort in relation to risk factors for future dementia using single voxel proton magnetic resonance spectroscopy. Participants in the multi-site PREVENT-Dementia study (age range 40–59 year old) underwent 3T magnetic resonance spectroscopy with the spectroscopy voxel placed in the posterior cingulate/precuneus region. Using LCModel, we quantified the absolute concentrations of myo-inositol, total N-acetylaspartate, total creatine, choline, glutathione and glutamate-glutamine for 406 participants (mean age 51.1; 65.3% female). Underlying partial volume effects were accounted for by applying a correction for the presence of cerebrospinal fluid in the magnetic resonance spectroscopy voxel. We investigated how metabolite concentrations related to apolipoprotein ɛ4 genotype, dementia family history, a risk score (Cardiovascular Risk Factors, Aging and Incidence of Dementia -CAIDE) for future dementia including non-modifiable and potentially-modifiable factors and dietary patterns (adherence to Mediterranean diet). Dementia family history was associated with decreased total N-acetylaspartate and no differences were found between apolipoprotein ɛ4 carriers and non-carriers. A higher Cardiovascular Risk Factors, Aging, and Incidence of Dementia score related to higher myo-inositol, choline, total creatine and glutamate-glutamine, an effect which was mainly driven by older age and a higher body mass index. Greater adherence to the Mediterranean diet was associated with lower choline, myo-inositol and total creatine; these effects did not survive correction for multiple comparisons. The observed associations suggest that at midlife the brain demonstrates subtle neurochemical changes in relation to both inherited and potentially modifiable risk factors for future dementia

    CAIDE dementia risk score relates to severity and progression of cerebral small vessel disease in healthy midlife adults: the PREVENT-Dementia study.

    Get PDF
    BACKGROUND: Markers of cerebrovascular disease are common in dementia, and may be present before dementia onset. However, their clinical relevance in midlife adults at risk of future dementia remains unclear. We investigated whether the Cardiovascular Risk Factors, Ageing and Dementia (CAIDE) risk score was associated with markers of cerebral small vessel disease (SVD), and if it predicted future progression of SVD. We also determined its relationship to systemic inflammation, which has been additionally implicated in dementia and SVD. METHODS: Cognitively healthy midlife participants were assessed at baseline (n=185) and 2-year follow-up (n=158). To assess SVD, we quantified white matter hyperintensities (WMH), enlarged perivascular spaces (EPVS), microbleeds and lacunes. We derived composite scores of SVD burden, and subtypes of hypertensive arteriopathy and cerebral amyloid angiopathy. Inflammation was quantified using serum C-reactive protein (CRP) and fibrinogen. RESULTS: At baseline, higher CAIDE scores were associated with all markers of SVD and inflammation. Longitudinally, CAIDE scores predicted greater total (p<0.001), periventricular (p<0.001) and deep (p=0.012) WMH progression, and increased CRP (p=0.017). Assessment of individual CAIDE components suggested that markers were driven by different risk factors (WMH/EPVS: age/hypertension, lacunes/deep microbleeds: hypertension/obesity). Interaction analyses demonstrated that higher CAIDE scores amplified the effect of age on SVD, and the effect of WMH on poorer memory. CONCLUSION: Higher CAIDE scores, indicating greater risk of dementia, predicts future progression of both WMH and systemic inflammation. Findings highlight the CAIDE score's potential as both a prognostic and predictive marker in the context of cerebrovascular disease, identifying at-risk individuals who might benefit most from managing modifiable risk.Research grants from the UK Alzheimer's Society, the US Alzheimer’s Association and philanthropic donations. This work was funded by a grant for the PREVENT-Dementia programme from the UK Alzheimer’s Society (grant numbers 178 and 264), and the PREVENT-Dementia study is also supported by the US Alzheimer’s Association (grant number TriBEKa-17–519007) and philanthropic donations. AL is supported by the Lee Kuan Yew Fitzwilliam PhD Scholarship and the Tan Kah Kee Postgraduate Scholarship. JDS is a Wellcome clinical PhD fellow funded on grant 203914/Z/16/Z to the Universities of Manchester, Leeds, Newcastle and Sheffield. EM is supported by Alzheimer’s Society Junior Research Fellowship (RG 9611). LS is supported by the Cambridge NIHR Biomedical Research Centre (BRC) and Alzheimer’s Research UK (ARUK-SRF2017B-1). HSM is supported by an NIHR Senior Investigator award. JOB and HSM receive infrastructural support from the Cambridge NIHR Biomedical Research Centre (BRC). This research was supported by the NIHR Cambridge BRC (BRC-1215-20014). The views expressed are those of the author(s) and not necessarily those of the NIHR or the Department of Health and Social Care

    Management of Portal Hypertension in Children

    Get PDF
    Management of portal hypertension in children has evolved over the past several decades. Portal hypertension can result from intrahepatic or extrahepatic causes. Management should be tailored to the child based on the etiology of the portal hypertension and on the functionality of the liver. The most serious complication of portal hypertension is gastroesophageal variceal bleeding, which has a mortality of up to 30%. Initial treatment of bleeding focuses on stabilizing the patient. Further treatment measures may include endoscopic, medical, or surgical interventions as appropriate for the child, depending on the cause of the portal hypertension. β-Blockers have not been proven to effectively prevent primary or secondary variceal bleeding in children. Sclerotherapy and variceal band ligation can be used to stop active bleeding and can prevent bleeding from occurring. Transjugular intrahepatic portosystemic shunts and surgical shunts may be reserved for those who are not candidates for transplant or have refractory bleeding despite medical or endoscopic treatment

    Effects of thymic selection of the T cell repertoire on HLA-class I associated control of HIV infection

    Get PDF
    Without therapy, most people infected with human immunodeficiency virus (HIV) ultimately progress to AIDS. Rare individuals (‘elite controllers’) maintain very low levels of HIV RNA without therapy, thereby making disease progression and transmission unlikely. Certain HLA class I alleles are markedly enriched in elite controllers, with the highest association observed for HLA-B57 (ref. 1). Because HLA molecules present viral peptides that activate CD8+ T cells, an immune-mediated mechanism is probably responsible for superior control of HIV. Here we describe how the peptide-binding characteristics of HLA-B57 molecules affect thymic development such that, compared to other HLA-restricted T cells, a larger fraction of the naive repertoire of B57-restricted clones recognizes a viral epitope, and these T cells are more cross-reactive to mutants of targeted epitopes. Our calculations predict that such a T-cell repertoire imposes strong immune pressure on immunodominant HIV epitopes and emergent mutants, thereby promoting efficient control of the virus. Supporting these predictions, in a large cohort of HLA-typed individuals, our experiments show that the relative ability of HLA-B alleles to control HIV correlates with their peptide-binding characteristics that affect thymic development. Our results provide a conceptual framework that unifies diverse empirical observations, and have implications for vaccination strategies.Mark and Lisa Schwartz FoundationNational Institutes of Health (U.S.) (Director’s Pioneer award)Philip T. and Susan M. Ragon FoundationJane Coffin Childs Memorial Fund for Medical ResearchBill & Melinda Gates FoundationNational Institute of Allergy and Infectious Diseases (U.S.)National Institutes of Health (U.S.) (contract no. HHSN261200800001E)National Institutes of Health (U.S.). Intramural Research ProgramNational Cancer Institute (U.S.)Center for Cancer Research (National Cancer Institute (U.S.)

    Treatment with a corticotrophin releasing factor 2 receptor agonist modulates skeletal muscle mass and force production in aged and chronically ill animals

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Muscle weakness is associated with a variety of chronic disorders such as emphysema (EMP) and congestive heart failure (CHF) as well as aging. Therapies to treat muscle weakness associated with chronic disease or aging are lacking. Corticotrophin releasing factor 2 receptor (CRF2R) agonists have been shown to maintain skeletal muscle mass and force production in a variety of acute conditions that lead to skeletal muscle wasting.</p> <p>Hypothesis</p> <p>We hypothesize that treating animals with a CRF2R agonist will maintain skeletal muscle mass and force production in animals with chronic disease and in aged animals.</p> <p>Methods</p> <p>We utilized animal models of aging, CHF and EMP to evaluate the potential of CRF2R agonist treatment to maintain skeletal muscle mass and force production in aged animals and animals with CHF and EMP.</p> <p>Results</p> <p>In aged rats, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater extensor digitorum longus (EDL) force production, EDL mass, soleus mass and soleus force production compared to age matched untreated animals. In the hamster EMP model, we demonstrate that treatment with a CRF2R agonist for up to 5 months results in greater EDL force production in EMP hamsters when compared to vehicle treated EMP hamsters and greater EDL mass and force in normal hamsters when compared to vehicle treated normal hamsters. In the rat CHF model, we demonstrate that treatment with a CRF2R agonist for up to 3 months results in greater EDL and soleus muscle mass and force production in CHF rats and normal rats when compared to the corresponding vehicle treated animals.</p> <p>Conclusions</p> <p>These data demonstrate that the underlying physiological conditions associated with chronic diseases such as CHF and emphysema in addition to aging do not reduce the potential of CRF2R agonists to maintain skeletal muscle mass and force production.</p
    • …
    corecore