597 research outputs found

    Appellate Procedure

    Get PDF

    Investigating microearthquake finite source attributes with IRIS Community Wavefield Demonstration Experiment in Oklahoma

    Get PDF
    Author Posting. © The Authors, 2018. This article is posted here by permission of The Royal Astronomical Society for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 215 (2018): 1072–1087, doi:10.1093/gji/ggy203.An earthquake rupture process can be kinematically described by rupture velocity, duration and spatial extent. These key kinematic source parameters provide important constraints on earthquake physics and rupture dynamics. In particular, core questions in earthquake science can be addressed once these properties of small earthquakes are well resolved. However, these parameters of small earthquakes are poorly understood, often limited by available data sets and methodologies. The Incorporated Research Institutions for Seismology Community Wavefield Experiment in Oklahoma deployed ∼350 three-component nodal stations within 40 km2 for a month, offering an unprecedented opportunity to test new methodologies for resolving small earthquake finite source properties in high resolution. In this study, we demonstrate the power of the nodal data set to resolve the variations in the seismic wavefield over the focal sphere due to the finite source attributes of an M2 earthquake within the array. The dense coverage allows us to tightly constrain rupture area using the second moment method even for such a small earthquake. The M2 earthquake was a strike-slip event and unilaterally propagated towards the surface at 90 per cent local S-wave speed (2.93 km s−1). The earthquake lasted ∼0.019 s and ruptured Lc ∼70 m and Wc ∼45 m. With the resolved rupture area, the stress-drop of the earthquake is estimated as 7.3 MPa for Mw 2.3. We demonstrate that the maximum and minimum bounds on rupture area are within a factor of two, much lower than typical stress-drop uncertainty, despite a suboptimal station distribution. The rupture properties suggest that there is little difference between the M2 Oklahoma earthquake and typical large earthquakes. The new three-component nodal systems have great potential for improving the resolution of studies of earthquake source properties.WF is currently supported by the Postdoctoral Scholar Program at the Woods Hole Oceanographic Institution, with funding provided by the Weston Howland Jr. Postdoctoral Scholarship. JM was partially supported by SCEC grant #17177 at Woods Hole Oceanographic Institution. This research was supported by the Southern California Earthquake Center (Contribution No. 8014). SCEC is funded by NSF Cooperative Agreement EAR-1033462 and USGS Cooperative Agreement G12AC20038

    The Mw 6.5 offshore Northern California earthquake of 10 January 2010 : ordinary stress drop on a high-strength fault

    Get PDF
    Author Posting. © American Geophysical Union, 2014. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 41 (2014): 6367–6373, doi:10.1002/2014GL061043.The 10 January 2010 Mw 6.5 earthquake offshore Northern California is one of the first intraplate earthquakes in oceanic lithosphere to be well captured by a GPS network. It presents an opportunity to evaluate rupture mechanics on a high-strength fault. Static inversion of the coseismic displacements shows that the slip peaks at the same depth as the expected strength envelope, where the differential stresses can be as high as 600 MPa. Laboratory experiments on peridotite predict dramatic dynamic weakening at these conditions. The observed ordinary stress drop, 2–20 MPa, may indicate that the lithosphere is much weaker than strength envelope predicts or that the failure mechanisms seen in the laboratory are not occurring during the rupture. The GPS observations show very little postseismic signal indicating that if a shear zone exists beneath the coseismic rupture, it operates at significantly greater stress levels than the coseismic stress change.This work was supported by NSF awards 0952174, 1246966, and 1357433.2015-03-2

    The M\u3csub\u3e\u3cem\u3ew\u3c/em\u3e\u3c/sub\u3e 6.5 offshore Northern California earthquake of 10 January 2010: Ordinary stress drop on a high‐strength fault

    Get PDF
    The 10 January 2010 Mw 6.5 earthquake offshore Northern California is one of the first intraplate earthquakes in oceanic lithosphere to be well captured by a GPS network. It presents an opportunity to evaluate rupture mechanics on a high‐strength fault. Static inversion of the coseismic displacements shows that the slip peaks at the same depth as the expected strength envelope, where the differential stresses can be as high as 600 MPa. Laboratory experiments on peridotite predict dramatic dynamic weakening at these conditions. The observed ordinary stress drop, 2–20 MPa, may indicate that the lithosphere is much weaker than strength envelope predicts or that the failure mechanisms seen in the laboratory are not occurring during the rupture. The GPS observations show very little postseismic signal indicating that if a shear zone exists beneath the coseismic rupture, it operates at significantly greater stress levels than the coseismic stress change

    Millimeter-level precision in a seafloor geodesy experiment at the Discovery transform fault, East Pacific Rise

    Get PDF
    Author Posting. © American Geophysical Union, 2013. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geochemistry, Geophysics, Geosystems 14 (2013): 4392–4402, doi:10.1002/ggge.20225.Direct-path acoustic ranging is a promising seafloor geodetic technique for continuous high-resolution monitoring of geodynamical process such as fault slip and magma intrusion. Here we report on a yearlong acoustic ranging experiment conducted across the discovery transform fault at ∼4°S on the East Pacific Rise. The ranging instruments utilized a novel acoustic signal designed to enhance precision. We find that, after correcting for variations in sound speed at the path end-points, the ranging measurements have a precision of ∼1 mm over baselines approaching 1 km in length. The primary difficulty in this particular experiment was with the physical stability of the benchmarks, which were deployed free fall from a ship. Despite the stability issues, it appears that the portion of the transform fault that the array covered was locked during the year of our survey. The primary obstacle to continuous, high sample rate, high-precision geodetic monitoring of oceanic ridges and transform faults is now limited to the construction of geodetic monuments that are well anchored into bedrock.This research was funded by the National Science Foundation OCE division under award 0351143.2014-04-0

    High-resolution imaging of the Bear Valley section of the San Andreas fault at seismogenic depths with fault-zone head waves and relocated seismicity

    Get PDF
    Author Posting. © Blackwell, 2005. This article is posted here by permission of Blackwell for personal use, not for redistribution. The definitive version was published in Geophysical Journal International 163 (2005): 152–164, doi:10.1111/j.1365-246X.2005.02703.x.Detailed imaging of fault-zone (FZ) material properties at seismogenic depths is a difficult seismological problem owing to the short length scales of the structural features. Seismic energy trapped within a low-velocity damage zone has been utilized to image the fault core at shallow depths, but these phases appear to lack sensitivity to structure in the depth range where earthquakes nucleate. Major faults that juxtapose rocks of significantly different elastic properties generate a related phase termed a fault-zone head wave (FZHW) that spends the majority of its path refracting along the fault. We utilize data from a dense temporary array of seismometers in the Bear Valley region of the San Andreas Fault to demonstrate that head waves have sensitivity to FZ structure throughout the seismogenic zone. Measured differential arrival times between the head waves and direct P arrivals and waveform modelling of these phases provide high-resolution information on the velocity contrast across the fault. The obtained values document along-strike, fault-normal, and downdip variations in the strength of the velocity contrast, ranging from 20 to 50 per cent depending on the regions being averaged by the ray paths. The complexity of the FZ waveforms increases dramatically in a region of the fault that has two active strands producing two separate bands of seismicity. Synthetic waveform calculations indicate that geological observations of the thickness and rock-type of the layer between the two strands are valid also for the subsurface structure of the fault. The results show that joint analysis of FZHWs and direct P arrivals can resolve important small-scale elements of the FZ structure at seismogenic depths. Detailed characterization of material contrasts across faults and their relation to earthquake ruptures is necessary for evaluating theoretical predictions of the effects that these structures have on rupture propagation.JM was supported by the Hoch Fund for innovative research

    Hepatic Encephalopathy

    Get PDF

    Oceanic Transform Fault Seismicity Earthquakes of a Different Kind

    Get PDF

    A slow slip event in the south central Alaska Subduction Zone and related seismicity anomaly

    Get PDF
    Author Posting. © American Geophysical Union, 2012. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 39 (2012): L15309, doi:10.1029/2012GL052351.We detected a slow slip event in the south central Alaska Subduction Zone by analyzing continuous GPS data from the Plate Boundary Observatory (PBO) network. The slow slip event started in early 2010 at a depth of 35 km beneath the Cook Inlet, near the down-dip end of the locked zone, and is ongoing as of November 2011 with an accumulated magnitude of Mw 6.9. Analysis of the earthquake catalog in the same area using the stochastic Epidemic Type Aftershock Sequence model (ETAS) shows a small but detectable seismicity increase during the slow slip event. We also find a change in seismicity rate around 1998, that may suggest an earlier slow slip event in the same region. Slow slip events in Alaska appear more widespread than previously thought but have remained undetected due to their long durations, the time intervals between them, and the limited time records from the continuous GPS.This research was supported by NSF EarthScope awards 0952174 (MW and JJM) and 0952249 (ER).2013-03-1

    Dynamic triggering and earthquake swarms on East Pacific Rise transform faults

    Get PDF
    Author Posting. © American Geophysical Union, 2017. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 44 (2017): 702-710, doi:10.1002/2016GL070857.While dynamic earthquake triggering has been reported in several continental settings, offshore observations are rare. Oceanic transform faults share properties with continental geothermal areas known for dynamic triggering: high geothermal gradients, high seismicity rates, and frequent swarms. We study dynamic triggering along the East Pacific Rise by analyzing 1 year of seismicity recorded by Ocean Bottom Seismographs. By comparing the response to teleseismic waves from global earthquakes, we find triggering to be most sensitive to changes in normal stress and to preferentially occur above 0.25 kPa. The clearest example of triggering occurs on the Quebrada and Gofar faults after the Mw8.0 Wenchuan earthquake. On Gofar, triggered seismicity occurs between the rupture areas of large earthquakes, within a zone characterized by aseismic slip, abundant microseismicity, frequent swarms, and low Vp. We infer that lithological properties inhibiting rupture propagation, such as high porosity and fluid content, also favor dynamic triggering.WHOI SSF program; GeoSim Career Support fellowship; USGS Grant Number: G14AP000582017-07-1
    corecore