34 research outputs found

    Cores and Core Logging for Geoscientists, 2nd edition

    Get PDF

    Editorial

    Get PDF

    Cannabis Use Linked to Altered Functional Connectivity of the Visual Attentional Connectivity in Patients With Psychosis and Controls

    Get PDF
    Background: Both chronic cannabis use and psychotic disorders are associated with abnormalities in visual atten-tional processing. Using functional magnetic resonance imaging (fMRI), we sought to determine whether there would be a difference in functional connectivity in patients and controls with and without a history of cannabis use in the visual and dorsal attention networks. Methods: Resting-state fMRI data were acquired in patients with early psy-chosis with (EPC = 29) and without (EPNC = 25); and controls with (HCC = 16) and without (HCNC = 22) cannabis use. Results: There was a patient effect in both Visual-Dorsal Attention Internetwork (F(1,87) = 5.326, P = .023) and the Visual Network (F(1,87) = 4.044, P = .047) and a cannabis effect in the Dorsal Attention Network (F(1,87) = 4.773, P = .032). These effects were specific to the networks examined with no evidence for significant patient or cannabis effects in other canonical networks. Patients with a history of cannabis use showed increased connec-tivity in the Dorsal Attention Network (134%, P = .019) and Visual Dorsal Attention Internetwork (285%, P = .036) compared to non-using controls. In the EPC group con-nectivity of the Visual Network (ρ = 0.379, P = .042) and Visual-Dorsal Attention Internetwork (ρ = 0.421, P = .023) correlated with visual hallucinations which were significantly different from EPNC (P = .011). Dorsal attention network strength correlated with severity of dependence for cannabis (ρ = 0.215, P = .04). Conclusion: We demonstrate specific cannabis and patient effects in networks associated with visual attentional processing. There is a differential association with hallucinatory symptoms in patients with and without a history of cannabis use. This may indicate that dysconnectivity in these networks serves different roles in the context of cannabis use

    Latent Class Analysis of Antisocial Behavior: Interaction of Serotonin Transporter Genotype and Maltreatment

    Get PDF
    To improve understanding about genetic and environmental influences on antisocial behavior (ASB), we tested the association of the 44-base pair polymorphism of the serotonin transporter gene (5-HTTLPR) and maltreatment using latent class analysis in 2,488 boys and girls from Wave 1 of the National Longitudinal Study of Adolescent Health. In boys, ASB was defined by three classes (Exclusive Covert, Mixed Covert and Overt, and No Problems) whereas in girls, ASB was defined by two classes (Exclusive Covert, No Problems). In boys, 5-HTTLPR and maltreatment were not significantly related to ASB. However, in girls, maltreatment, but not 5-HTTLPR, was significantly associated with ASB. A significant interaction between 5-HTTLPR and maltreatment was also observed, where maltreated girls homozygous for the short allele were 12 times more likely to be classified in the Exclusive Covert group than in the No Problems group. Structural differences in the latent structure of ASB at Wave 2 and Wave 3 prevented repeat LCA modeling. However, using counts of ASB, 5-HTTLPR, maltreatment, and its interaction were unrelated to overt and covert ASB at Wave 2 and only maltreatment was related to covert ASB at Wave 3. We discuss these findings within the context of sex differences in ASB and relevant models of gene-environment interplay across developmental periods

    Amino acid transport : the special case of a H/L-glutamate cotransport system in Asparagus sprengeri mesophyll cells /

    No full text
    The addition of L-Glutamate (L-GLU) and L-Hethionine ~ulfoximine (L-HSO) to mechanically isolated. photosynthetically competent, Asparagus sprengeri mesophyll cells ~u~pended in 1mM CaS04 cau~ed an immediate transient alkalinization of the cell su~pension medium in both the light and dark. The alkalinization response was specific and stereospecific as none of the L-isomers of the other 19 protein amino acids tested or D-GLU gave this response. Uptake of 14C-L-GLU was stimulated by the light. The addition of non-radioactive L-GLU. or L-GLU analogs together with 14C-L-GLU showed that only L-GLU and L-HSO stimulated alkalinization whilst inhibiting the uptake of 14C-L-GLU. Both the L-GLU dependent alkalinization and the upt~ke of 14C-L-GLU were stimulated when the external pH was decreased from 6.5 to 5.5. Increasing external K+ concentrations inhibited the uptake of 14C-L-GLU. Fusicoccin (FC) stimulated uptake. The L-GLU dependent alkalinization re~ponse exhibited monophasic saturation kinetics while the uptake of 14C-L-GLU exhibited biphasic saturation kinetics. In addition to a saturable component. the uptake kinetics also showed a linear component of uptake. Addition of L-GLU and L-MSO caused internal acidification of the cell as measured by a change in the distribution of 14C-DMO. There was no change in K+ efflux when L-GLU was added. A H+ to L-GLUinflux stoichiometry of 3:1 wa~ mea~ured at an external I.-GLU concentration of O.5mM and increased with increasing external 13 L-QLU concentration. Metabolism of L-GLU was detected manometrlcally by observing an increase in COa evolution upon the addition of L-QLU and by detection of i*C02 evolution upon the addition of »*C-L-GLU. »*C02 evolution was higher in the dark than in the light. The data are consistent with the operation of a H+/L-QLO cotransport system. The data also show that attempts to quantify the stoichlometry of the process were complicated by the metabolism of L-GLU

    Volume 33 Number 1 March 2006

    No full text

    Editorial

    Get PDF

    Axial and bending fatigue of a medium carbon steel including geometry and residual stress effects

    No full text
    This paper discusses the effects of changes in specimen geometry, stress gradient, and residual stresses on fully reversed constant amplitude uniaxial fatigue behavior of a medium carbon steel. Axial fatigue tests were performed on both flat and round specimens, while four point rotating bending tests were performed only on round specimens. All the tests were performed using shot peened and unpeened flat and round samples, to investigate the effects of compressive residual stresses on fatigue behavior. The specimens in the rotating bending tests experienced longer life for a given stress amplitude than in the axial test. Shot-peening was found to be beneficial in the long life region, while in short life tests the shot-peened samples experienced a shorter life than the unpeened samples under both axial and bending test conditions. Specimen geometry had a minimal effect on fatigue life and the difference observed between the behavior of round and flat samples is thought to be due to slightly different hardness levels of the two specimen geometries. The data generated from the aforementioned tests and conditions and the effects observed and their implications on fatigue behavior and life predictions are analyzed and discussed in this paper. © 2009 SAE International
    corecore