50 research outputs found

    The New Flavor of Higgsed Gauge Mediation

    Get PDF
    Recent LHC bounds on squark masses combined with naturalness and flavor considerations motivate non-trivial sfermion mass spectra in the supersymmetric Standard Model. These can arise if supersymmetry breaking is communicated to the visible sector via new extended gauge symmetries. Such extended symmetries must be spontaneously broken, or confined, complicating the calculation of soft masses. We develop a new formalism for calculating perturbative gauge-mediated two-loop soft masses for gauge groups with arbitrary patterns of spontaneous symmetry breaking, simplifying the framework of "Higgsed gauge mediation." The resulting expressions can be applied to Abelian and non-Abelian gauge groups, opening new avenues for supersymmetric model building. We present a number of examples using our method, ranging from grand unified threshold corrections in standard gauge mediation to soft masses in gauge extensions of the Higgs sector that can raise the Higgs mass through non-decoupling D-terms. We also outline a new mediation mechanism called "flavor mediation", where supersymmetry breaking is communicated via a gauged subgroup of Standard Model flavor symmetries. Flavor mediation can automatically generate suppressed masses for third-generation squarks and implies a nearly exact U(2) symmetry in the first two generations, yielding a "natural SUSY" spectrum without imposing ad hoc global symmetries or giving preferential treatment to particular generations.Comment: 13 pages, 3 figures; v2: typos corrected, references adde

    Multiple Gamma Lines from Semi-Annihilation

    Get PDF
    Hints in the Fermi data for a 130 GeV gamma line from the galactic center have ignited interest in potential gamma line signatures of dark matter. Explanations of this line based on dark matter annihilation face a parametric tension since they often rely on large enhancements of loop-suppressed cross sections. In this paper, we pursue an alternative possibility that dark matter gamma lines could arise from "semi-annihilation" among multiple dark sector states. The semi-annihilation reaction with a single final state photon is typically enhanced relative to ordinary annihilation into photon pairs. Semi-annihilation allows for a wide range of dark matter masses compared to the fixed mass value required by annihilation, opening the possibility to explain potential dark matter signatures at higher energies. The most striking prediction of semi-annihilation is the presence of multiple gamma lines, with as many as order N^3 lines possible for N dark sector states, allowing for dark sector spectroscopy. A smoking gun signature arises in the simplest case of degenerate dark matter, where a strong semi-annihilation line at 130 GeV would be accompanied by a weaker annihilation line at 173 GeV. As a proof of principle, we construct two explicit models of dark matter semi-annihilation, one based on non-Abelian vector dark matter and the other based on retrofitting Rayleigh dark matter.Comment: 15 pages of text, 8 figures. v2: refs adde

    Colorful Twisted Top Partners and Partnerium at the LHC

    Get PDF
    In scenarios that stabilize the electroweak scale, the top quark is typically accompanied by partner particles. In this work, we demonstrate how extended stabilizing symmetries can yield scalar or fermionic top partners that transform as ordinary color triplets but carry exotic electric charges. We refer to these scenarios as "hypertwisted" since they involve modifications to hypercharge in the top sector. As proofs of principle, we construct two hypertwisted scenarios: a supersymmetric construction with spin-0 top partners, and a composite Higgs construction with spin-1/2 top partners. In both cases, the top partners are still phenomenologically compatible with the mass range motivated by weak-scale naturalness. The phenomenology of hypertwisted scenarios is diverse, since the lifetimes and decay modes of the top partners are model dependent. The novel coupling structure opens up search channels that do not typically arise in top-partner scenarios, such as pair production of top-plus-jet resonances. Furthermore, hypertwisted top partners are typically sufficiently long lived to form "top-partnerium" bound states that decay predominantly via annihilation, motivating searches for rare narrow resonances with diboson decay modes.Comment: 39 pages, 6 figures; v2: added minor clarifications and references; published versio

    Ideals with Larger Projective Dimension and Regularity

    Get PDF
    We define a family of homogeneous ideals with large projective dimension and regularity relative to the number of generators and their common degree. This family subsumes and improves upon constructions given in [Cav04] and [McC]. In particular, we describe a family of three-generated homogeneous ideals in arbitrary characteristic whose projective dimension grows asymptotically as sqrt{d}^(sqrt(d) - 1).Comment: 10 pages. This work was completed at the MRC for Commutative Algebra in Snowbird, UT, which was generously supported by the AM

    The Spectrum of Goldstini and Modulini

    Get PDF
    When supersymmetry is broken in multiple sectors via independent dynamics, the theory furnishes a corresponding multiplicity of "goldstini" degrees of freedom which may play a substantial role in collider phenomenology and cosmology. In this paper, we explore the tree-level mass spectrum of goldstini arising from a general admixture of F-term, D-term, and almost no-scale supersymmetry breaking, employing non-linear superfields and a novel gauge fixing for supergravity discussed in a companion paper. In theories of F-term and D-term breaking, goldstini acquire a mass which is precisely twice the gravitino mass, while the inclusion of no-scale breaking renders one of these modes, the modulino, massless. We argue that the vanishing modulino mass can be explained in terms of an accidental and spontaneously broken "global" supersymmetry.Comment: 10 pages, 2 figures; v2: typo corrected, references updated; v3: version to appear in JHE

    Flavor Mediation Delivers Natural SUSY

    Get PDF
    If supersymmetry (SUSY) solves the hierarchy problem, then naturalness considerations coupled with recent LHC bounds require non-trivial superpartner flavor structures. Such "Natural SUSY" models exhibit a large mass hierarchy between scalars of the third and first two generations as well as degeneracy (or alignment) among the first two generations. In this work, we show how this specific beyond the standard model (SM) flavor structure can be tied directly to SM flavor via "Flavor Mediation". The SM contains an anomaly-free SU(3) flavor symmetry, broken only by Yukawa couplings. By gauging this flavor symmetry in addition to SM gauge symmetries, we can mediate SUSY breaking via (Higgsed) gauge mediation. This automatically delivers a natural SUSY spectrum. Third-generation scalar masses are suppressed due to the dominant breaking of the flavor gauge symmetry in the top direction. More subtly, the first-two-generation scalars remain highly degenerate due to a custodial U(2) symmetry, where the SU(2) factor arises because SU(3) is rank two. This custodial symmetry is broken only at order (m_c/m_t)^2. SUSY gauge coupling unification predictions are preserved, since no new charged matter is introduced, the SM gauge structure is unaltered, and the flavor symmetry treats all matter multiplets equally. Moreover, the uniqueness of the anomaly-free SU(3) flavor group makes possible a number of concrete predictions for the superpartner spectrum.Comment: 17 pages, 7 figures, 2 tables. v2 references added, minor changes to flavor constraints and a little discussion adde

    Pathways to ischemic neuronal cell death: are sex differences relevant?

    Get PDF
    We have known for some time that the epidemiology of human stroke is sexually dimorphic until late in life, well beyond the years of reproductive senescence and menopause. Now, a new concept is emerging: the mechanisms and outcome of cerebral ischemic injury are influenced strongly by biological sex as well as the availability of sex steroids to the brain. The principal mammalian estrogen (17 β estradiol or E2) is neuroprotective in many types of brain injury and has been the major focus of investigation over the past several decades. However, it is becoming increasingly clear that although hormones are a major contributor to sex-specific outcomes, they do not fully account for sex-specific responses to cerebral ischemia. The purpose of this review is to highlight recent studies in cell culture and animal models that suggest that genetic sex determines experimental stroke outcome and that divergent cell death pathways are activated after an ischemic insult. These sex differences need to be identified if we are to develop efficacious neuroprotective agents for use in stroke patients

    Visible Supersymmetry Breaking and an Invisible Higgs

    Get PDF
    If there are multiple hidden sectors which independently break supersymmetry, then the spectrum will contain multiple goldstini. In this paper, we explore the possibility that the visible sector might also break supersymmetry, giving rise to an additional pseudo-goldstino. By the standard lore, visible sector supersymmetry breaking is phenomenologically excluded by the supertrace sum rule, but this sum rule is relaxed with multiple supersymmetry breaking. However, we find that visible sector supersymmetry breaking is still phenomenologically disfavored, not because of a sum rule, but because the visible sector pseudo-goldstino is generically overproduced in the early universe. A way to avoid this cosmological bound is to ensure that an R symmetry is preserved in the visible sector up to supergravity effects. A key expectation of this R-symmetric case is that the Higgs boson will dominantly decay invisibly at the LHC.Comment: v1 - 27 pages, 13 figures, 1 table; v2 - references added; v3 - expanded discussion of higgs sector, JHEP versio
    corecore