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a b s t r a c t

We define a family of homogeneous ideals with large projective
dimension and regularity relative to the number of generators and
their common degree. This family subsumes and improves upon
constructions given by Caviglia (2004) and McCullough (2011). In
particular, we describe a family of three-generated homogeneous
ideals, in arbitrary characteristic, whose projective dimension
grows asymptotically as a power of the degree of the generators.
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1. Introduction

Throughout this paper, let K be a field of any characteristic and set R = K [x1, . . . , xn]. We consider
the following question of Stillman:

Question 1.1 (Stillman, Peeva and Stillman (2009, Problem 3.14)). Fix a sequence of natural numbers
d1, . . . , dN . Does there exist a number p (independent of n) such that

pd(R/I) ≤ p

for all graded ideals I with a minimal system of homogeneous generators of degrees d1, . . . , dN?
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This question is open in all but low degree cases. In Zhang (2011), Zhang’s work on local
cohomology modules in characteristic p suggested that

∑N
i=1 di was an upper bound for pd(R/I). In

McCullough (2011), the second author showed this was false by producing a family of ideals whose
projective dimensions far exceeded this bound. However, in the three-generated ideal case, these
ideals had projective dimension of only d + 2 where d is the common degree of the generators. To
the best of our knowledge there were no known ideals with three degree d generators with larger
projective dimension. Clearly then d+ 2 is a lower bound for any answer to the three-generated case
of Stillman’s Conjecture.We note that by the work of Burch (1968) and later Bruns (1976), it is natural
to ask whether any three-generated ideals in degree d have larger projective dimension than this.

In this paper we generalize the family of ideals given in McCullough (2011) to a larger family with
much larger projective dimension. In the three-generated case, we produce a family of ideals with

generators of degree d and projective dimension larger than
√
d

√
d−1

. We therefore give a new lower
bound for any answer to Stillman’s question.

The paper is organized as follows. In Section 2 we recall some previous results and definitions.
In Section 3 we define our family of ideals and compute its projective dimension. In Section 4 we
compute some specific examples and show that this family subsumes two interesting families of ideals
previously defined. We conclude with some computations and questions regarding the Castelnuovo–
Mumford regularity of these ideals.

2. Preliminaries

Let R = K [x1, . . . , xn] and let I = (f1, . . . , fN) be a homogeneous ideal and set di = deg(fi). Let F•

be the minimal graded free resolution of R/I . Then we may write

Fi =


j∈Z

R(−j)βi,j ,

where R(−j) denotes a rank one free module with generator in degree j. In this case F0 = R and
F1 =

N
j=1 R(−dj). The exponentsβi,j are called the Betti numbers of R/I .We can define the projective

dimension of R/I as

pd(R/I) = max{i | βi,j ≠ 0 for some j}.

Thus, Stillman’s question can be rephrased by asking if pd(R/I) is bounded by a formula dependent
only on β1,j.

The Castelnuovo–Mumford regularity of R/I is defined as

reg(R/I) = max{j − i | βi,j ≠ 0 for some i}.

The Betti numbers are often displayed in matrix form called a Betti table. In the (i, j) entry we put
βi,j−i. Thus, we can view the projective dimension of R/I as the index of the last nonzero column in
the Betti table and the regularity of R/I as the index of the last nonzero row.

Letm be the gradedmaximal ideal of R. We also denote the length of themaximal regular sequence
on R/I contained in m by depth(R/I). Finally, we let socle(R/I) denote {x ∈ R/I | xm = 0}. To compute
projective dimension, wemake use of the graded version of the Auslander–Buchsbaum Theorem (see,
e.g., Eisenbud (1995, Theorem 19.9)), so in order to show that R/I has maximal projective dimension,
we need only show that socle(R/I) ≠ 0.

Further motivating Question 1.1 is Problem 3.15 of Peeva and Stillman (2009) is an analog of
Stillman’s question for regularity: Is there a bound for reg(R/I)dependent only on d1, . . . , dN? Caviglia
showed that this question is equivalent to Question 1.1. See Engheta (2005), pages 11–14 for a nice
explanation of this argument.

It is clear that there is an affirmative answer to Stillman’s question when N ≤ 2 or when
d1 = · · · = dN = 1. Eisenbud and Huneke (in unpublished work) verified the case N = 3 and
d1 = d2 = d3 = 2 by showing that for ideals I generated by three quadrics, pd(R/I) ≤ 4. In Engheta
(2010), Engheta verified the case N = 3 and d1 = d2 = d3 = 3 giving pd(R/I) ≤ 36 for this case. This
bound is likely not tight as the largest known projective dimension of R/I for an ideal I generated by
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three cubics is just 5. The first such example was found by Engheta (2010). A simpler example is given
in McCullough (2011).

Few other special cases of Stillman’s question are known. However, in McCullough (2011), the
second author defined a family of homogeneous ideals whose projective dimension grows quickly
relative to the number and degrees of the generators. These ideals were defined as follows:

Definition 2.1. Fix integersm, n, d such thatm ≥ 1, n ≥ 0 and d ≥ 2. Order theMm,d−1 =
(m+d−2)!

(m−1)!(d−1)!
monomials of degree d − 1 over the variables x1, . . . , xm and denote the ith such monomial by Zi. Let
p = Mm,d−1 and let R = K [x1, . . . , xm, y1,1, . . . , yp,n] be a polynomial ring inm+ pn variables over K .
We define Im,n,d to be the ideal generated by the followingm+n degree d homogeneous polynomials:

xdi | 1 ≤ i ≤ m


∪


p−

j=1

Zjyj,k | 1 ≤ k ≤ n


.

It was shown that the projective dimension of R/I is

pd(R/I) = m + np = m + n
(m + d − 2)!

(m − 1)!(d − 1)!
.

In the three-generated degree d case (m = 2, n = 1), the projective dimension of R/I is d + 2. In
the general case with N degree d generators (m = 2, n = N − 2), the projective dimension of R/I
grows asymptotically as a polynomial in d of degree N −2. In the following section we generalize this
example and define a new family of ideals with projective dimension far exceeding both of these.

3. A new family of ideals

A generalization of Definition 2.1 is given by the following:

Definition 3.1. Let K be a field and fix n, n ≥ 1. Further, fix integers g,m1, . . . ,mn such that g ≥ 2,
mn ≥ 0,mn−1 ≥ 1 andmi ≥ 2 for 1 ≤ i ≤ n − 2. Set:

• Mn = mn,
• Mk = mk − 1 for k < n,
• dk = mk + · · · + mn + 1,
• d = d1.

Unless explicit bounds are given, we will use j or j′ for an arbitrary integer in {1, 2, . . . , g} and k or k′

for an arbitrary integer in {1, 2, . . . , n}.
Finally, for 0 ≤ k ≤ n let

Ak =

(aj,k′)

 0 ≤ aj,k′ ≤ Mk′ and
g∑

j=1
aj,k′ = mk′ for

1 ≤ k′
≤ k, and aj,k′ = 0 for k < k′

≤ n

 ,

R = K [X, yA | X = (xj,k),A ∈ An],

Ig,(m1,...,mn) = (xd1,1, . . . , x
d
g,1, f ),

where

f =

n−1−
k=1

−
A∈Ak−1

g−
j=1

XAxmk
j,k x

dk+1
j,k+1 +

−
B∈An

XByB.

By XA we mean
∏

j,k x
aj,k
j,k , where A = (ai,j).

The notation above was chosen so that the monomial terms in the generator f are all of the form
XA or XAyA for some g × n matrix A. We note that the restrictions on g and the mi guarantee that
Ai ≠ ∅ for all 0 ≤ i ≤ n − 2. Further, both An−1 and An are non-empty if and only if mn−1 ≥ 2.
Before computing the projective dimension of these ideals, we give an example in detail.
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Example 3.2. Consider the ideal I = I2,(2,2,2). Then d = d1 = 2+ 2+ 2+ 1 = 7, d2 = 2+ 2+ 1 = 5,
and d3 = 2 + 1 = 3.M1 = M2 = 1 andM3 = 2. We then have that

A0 =


0 0 0
0 0 0


,

A1 =


1 0 0
1 0 0


,

A2 =


1 1 0
1 1 0


,

A3 =


1 1 2
1 1 0


,

1 1 1
1 1 1


,

1 1 0
1 1 2


.

Finally, the ideal I is
x71,1, x

7
2,1, f


,

where

f = X


0 0 0
0 0 0


x21,1x

5
1,2 + X


0 0 0
0 0 0


x22,1x

5
2,2 + X


1 0 0
1 0 0


x21,2x

3
1,3 + X


1 0 0
1 0 0


x22,2x

3
2,3

+X


1 1 2
1 1 0


y

1 1 2
1 1 0

 + X


1 1 1
1 1 1


y

1 1 1
1 1 1

 + X


1 1 0
1 1 2


y

1 1 0
1 1 2


= x21,1x

5
1,2 + x22,1x

5
2,2 + x1,1x2,1x21,2x

3
1,3 + x1,1x2,1x22,2x

3
2,3

+ x1,1x2,1x1,2x2,2x21,3y

1 1 2
1 1 0

 + x1,1x2,1x1,2x2,2x1,3x2,3y
1 1 1
1 1 1


+ x1,1x2,1x1,2x2,2x22,3y


1 1 0
1 1 2

.
We note that A2 is not used in the definition of I , and in general An−1 is not used in the definition of
Ig,(m1,...,mn). Moreover, I is an ideal with 3 degree 7 generators in a polynomial ring R with 9 variables
and R/I has projective dimension 9 by the following theorem.

Theorem 3.3. Using the notation above with I = Ig,(m1,...,mn), depth(R/I) = 0.

In the following proofs, we say that A = (aj,i) ∈ Ak and B = (bj,i) ∈ Ak′ start the same if aj,i = bj,i
for all i ≤ min(k, k′) and all j with 1 ≤ j ≤ g . Note that if A ∈ A0, then A and B start the same for all
B ∈ Ak, 0 ≤ k ≤ n.

To prove the theorem, we first need the following lemma:

Lemma 1. For each k, 0 ≤ k ≤ n − 1, let Ek = (ej′,k′) be a g × n matrix where ej′,k′ = dk′ − 1 for
1 ≤ j′ ≤ g, 1 ≤ k′

≤ k and zero elsewhere. Then

XEkxdk+1
j,k+1 ∈ I

for all j such that 1 ≤ j ≤ g (interpret E0 = 0).

Proof. Induct on k. When k = 0, this says xdj,1 ∈ I and indeed these are the first g generators of I .
Assume k ≥ 1, and choose any A ∈ Ak−1. Note that A ≤ Ek, so

XAxmk
j,k x

dk+1
j,k+1X

C
= XEkxdk+1

j,k+1

for some matrix C with nonnegative integer entries. Notice that the matrix C is of the form

d1 − 1 − a1,1 · · · dk−1 − 1 − a1,k−1 dk − 1 0 · · · 0
...

...
...

...
...

d1 − 1 − aj−1,1 · · · dk−1 − 1 − aj−1,k−1 dk − 1 0 · · · 0
d1 − 1 − aj,1 · · · dk−1 − 1 − aj,k−1 dk − 1 − mk 0 · · · 0
d1 − 1 − aj+1,1 · · · dk−1 − 1 − aj+1,k−1 dk − 1 0 · · · 0

...
...

...
...

...
d1 − 1 − ag,1 · · · dk−1 − 1 − ag,k−1 dk − 1 0 · · · 0


.
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It is enough to show hXC
∈ I for all terms h of f such that h ≠ XAxmk

j,k x
dk+1
j,k+1. The remaining terms of f

are of the form

h = XBx
mk′
j′,k′x

dk′+1
j′,k′+1

for some B ∈ Ak′−1 with 1 ≤ k′
≤ n − 1 and some j′ ≤ g such that A ≠ B or A = B and j′ ≠ j or of

the form

h = XByB

for some B ∈ Ak′ with k′
= n. Assume h is one of these terms and letM = hXC.

If A and B do not start the same, then consider the first index t ≤ min(k − 1, k′
− 1) where they

disagree. Then the exponent of xs,t in M will be at least dt for some s, and the exponents of xs′,t ′ will
be dt ′ − 1 for all t ′ < t (since A and B agree here), so by the inductive hypothesis,M is in I .

Now assume that A and B start the same. We will break this up according to cases:
Case k′ < k: The exponent of xj′,k′ in M is at least dk′ . This is true since we added dk′ − 1 − aj′,k′

(the (j′, k′) entry of C) tomk′ and mk′ ≥ aj′,k′ + 1. Because A and B start the same, we can write

M = XEk′ x
dk′
j′,k′X

D

whereD is some g×nmatrixwith nonnegative integral entries. The inductive hypothesis again implies
this term is in I .

Case k′ = k: Then A = B. Recall that k ≤ n − 1 and thus mk′ ≥ 1. Since the terms defined by A
and B are distinct, j ≠ j′. So the exponent of xj′,k′ in M is at least dk′ , and this term is in I .

Case k′ > k: Notice that at least two terms in each column k of B are nonzero. This is followswhen
k ≤ n−2 becausemi ≥ 2 for 1 ≤ i ≤ n−2. If k = n−1 then k′

= n and B ∈ An. This forcesmn−1 > 2
(if mn−1 = 1 then Mn−1 = 0 and An−1 = An = ∅) and thus at least two terms in column n − 1 of B
are nonzero. Now there exists some j′ ≠ j such that bj′,k is positive, and hence the exponent of xj′,k in
M is at least dk, so this term is in I . �

Proof of Theorem 3.3. We will show that R/I has depth zero by showing that the element

S = XT
∈ (I : m) − I,

where T = (tj,k) and tj,k = dk − 1; that is, the image of S in R/I is in socle(R/I).
Since no term of any generator of I divides S, it is clear that S /∈ I . So we must show that every

variable multiplies S into I . The fact that xj,kS ∈ I for every j, k follows from the following preceding
Lemma. We now show that yAS ∈ I for all A ∈ An. Notice that

yAS = yAXA
· XC

where C is again some g × n matrix with nonnegative integral entries and yAXA is the term in f
associated to yA. As before, it is enough to show hXC

∈ I for all terms h in f such that h ≠ yAXA.
Each h has an XB as a factor, for some B ∈ Ak, k ∈ {1, 2, . . . , n − 2, n}.

If A and B do not start the same, let t be the first index where they differ. Then the exponent of
some xs,t will be at least dt for some s, so by the lemma, this term is in I .

Otherwise, A and B start the same and k < n − 1 (if k = n then they cannot start the same). In
other words,

h = XBxmk
j,k x

dk+1
j,k+1.

Hence hXC has xdk+1
j,k+1X

Ek as a factor and thus, by the lemma, is an element of I . �

Corollary 3.4.

pd(R/I) = gn +


mn + g − 1

g − 1

 n−1∏
i=1


mi + g − 1

g − 1


− g


.
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Proof. This follows from the graded version of the Auslander–Buchsbaum Theorem and by counting
the number of variables in the R. We get gn variables xj,k with 1 ≤ j ≤ g and 1 ≤ k ≤ n. For each
A ∈ An, we get a variable yA. Note that An consists of exactly those matrices A with nonnegative
integer entries such that
(1) All the entries in column k sum tomk.
(2) For all k < n, there are at least two nonzero entries in column k.

In other words, the term
∏g

j=1 x
aj,k
j,k is a monomial of degree mk in g variables and when k < n, this

monomial is not a pure power. The formula for the projective dimension follows by counting all such
monomials. �

Example 3.5. Continuing the notation from Example 3.2, the previous theorem shows us that

S = X


6 4 2
6 4 2


= x61,1x

6
2,1x

4
1,2x

4
2,2x

2
1,3x

2
2,3 ∈ (I : m) − I.

So the image of S in R/I is in the socle of R/I . It follows that depth(R/I) = 0 and hence pd(R/I) = 9.

Corollary 3.6. Over any field K and for any positive integer p, there exists an ideal I in a polynomial ring
R over K with three homogeneous generators in degree p2 such that pd(R/I) ≥ pp−1.

Proof. This follows from the previous Corollary by taking the ideal

I = I2,(p+1,...,p+1  
p−1 times

,0). �

Wenote that this answers two questions posed by the second author in the negative. The following
result can be viewed as an improvement to Corollary 4.7 in McCullough (2011).

Corollary 3.7. Over any field K and for any positive integer p, there exists an ideal I in a polynomial ring
R over K with 2p + 1 homogeneous generators in degree 2p + 1 such that pd(R/I) ≥ p2p.

Proof. Take I to be the ideal

I2p,(2,2,2,...,2  
p times

). �

Neither of these results gives an answer to Stillman’s Question, but they impose large lower bounds
on any possible answer.

4. Examples, special subfamilies and regularity questions

First we note that the family of ideals defined by the second author are a subfamily of the ideals
defined above. Using the notation in Definition 2.1, we recall the definition for positive integers m, d
and define the ideal

Im,1,d = (xd1, . . . , x
d
m, f ),

with

f =

−
i

Ziyi,

where Zi runs through the degree d− 1 monomials in the variables x1, . . . , xm. Up to relabeling of the
variables, we note that

Im,1,d = Im,(d−1)

as in Definition 3.1 of the previous section. (We may replicate the last generator using new variables
to get the full ideal Im,n,d.) As stated earlier, the three-generated version of these ideals satisfies
pd(R/I) = d + 2 when the generators were taken in degree d. Here we give a specific example of
our new construction that improves upon this example.

Example 4.1. I = I2,(3,1).
This is an ideal with 3 quintic generators such that pd(R/I) = 8.
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Let R be the following polynomial ring

R = K
[
x1,1, x1,2, x2,1, x2,2, y

2 1
1 0

, y
1 0
2 1

, y
1 1
2 0

, y
2 0
1 1

].

Then the ideal I is given by

I =


x51,1, x

5
2,1, x

3
1,1x

2
1,2 + x32,1x

2
2,2 + x21,1x1,2x2,1y


2 1
1 0

 + x1,1x22,1x2,2y

1 0
2 1


+ x1,1x1,2x22,1y


1 1
2 0

 + x21,1x2,1x2,2y

2 0
1 1


and has Betti table

0 1 2 3 4 5 6 7 8
Total: 1 3 53 184 287 248 124 34 4
0: 1 – – – – – – – –
1: – – – – – – – – –
2: – – – – – – – – –
3: – – – – – – – – –
4: – 3 – – – – – – –
5: – – – – – – – – –
6: – – – – – – – – –
7: – – – – – – – – –
8: – – 3 – – – – – –
9: – – 3 4 – – – – –
10: – – 13 46 68 56 28 8 1
11: – – 33 132 218 192 96 26 3
12: – – 1 2 1 – – – –

We also note that our family of ideals subsumes another family of ideals studied by Caviglia in
Caviglia (2004). Let R = K [w, x, y, z] and let d ≥ 2. Then set

Cd = (xd, yd, xwd−1
− yzd−1).

Caviglia showed that reg(R/Cd) = d2 − 2. To our knowledge, this family has the fastest growing
regularity relative to the degree of the generators in the three-generated case. We note that these
ideals are also a subfamily of the ideals defined in the previous section. In fact, up to a relabeling of
the variables,

Cd = I2,(1,d−2).

In the following example, we show that some of our ideals have larger regularity than Caviglia’s
examples.

Example 4.2. I = I2,(2,1,2).
This is an ideal with 3 degree 6 generators such that pd(R/I) = 6 and reg(R/I) = 41. Its Betti table is
displayed at the end of this section.

R = K

x1,1, x1,2, x1,3, x2,1, x2,2, x2,3


I = (x61,1, x

6
2,1, x

2
1,1x

4
1,2 + x22,1x

4
2,2 + x1,1x2,1x1,2x31,3 + x1,1x2,1x2,2x32,3).

Calculations withMacaulay2 Grayson and Stillman (0000) indicate that many of the ideals defined
in the previous section have much larger regularity than even this example. Specifically, we believe
that the regularity of

I = I2,(2,2,2,...,2  
p times

,1,i)
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has regularity that grows asymptotically as ip+2. When p = 0, this agrees with Caviglia’s result.
However his methods do not extend to the ideals above. Further, it has been verified usingMacaulay2
Grayson and Stillman (0000) that for 0 ≤ d ≤ 12,

reg(R/I2,(2,1,d)) =


1
2
d3 − 3d2 + 8d − 7 if d is even,

1
2
d3 −

5
2
d2 + 5d − 3 if d is odd.

Wenote that the regularity of R/I is bounded belowby the degrees of the socle elements. However, the
socle elements we computed above only grow linearly with the degrees of the generators. Computing
the regularity of the ideals above would provide interesting computational examples and also give
some insight into the regularity version of Stillman’s question.

Betti Table of R/I2,(2,1,2):

0 1 2 3 4 5 6
Total: 1 3 75 247 320 188 42
0: 1 – – – – – –
1: – – – – – – –
2: – – – – – – –
3: – – – – – – –
4: – – – – – – –
5: – 3 – – – – –
6: – – – – – – –
7: – – – – – – –
8: – – – – – – –
9: – – – – – – –
10: – – 3 – – – –
11: – – – – – – –
12: – – – – – – –
13: – – 2 3 – – –
14: – – – – – – –
15: – – – – – – –
16: – – 3 6 3 – –
17: – – – – – – –
18: – – 1 4 5 2 –
19: – – 4 8 4 – –
20: – – 1 4 6 4 1
21: – – 2 8 10 4 –
22: – – 6 14 11 4 1
23: – – 2 8 12 8 2
24: – – 4 16 21 10 1
25: – – 8 20 18 8 2
26: – – 3 12 18 12 3
27: – – 6 24 32 16 2
28: – – 3 12 18 12 3
29: – – 4 16 24 16 4
30: – – 3 12 18 12 3
31: – – 4 16 24 16 4
32: – – 1 4 6 4 1
33: – – 4 16 24 16 4
34: – – 1 4 6 4 1
35: – – 2 8 12 8 2
36: – – 1 4 6 4 1
37: – – 2 8 12 8 2
38: – – 1 4 6 4 1
39: – – 2 8 12 8 2
40: – – – – – – –
41: – – 2 8 12 8 2
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