19 research outputs found
Comparison of multiple methods for identification of hyperprolactinemia in the presence of macroprolactin
Macroprolactin is a large, heterogeneous form of prolactin with limited bioavailability. Detection of macroprolactin by different immunoassays varies widely. The objectives of this study were to determine the immunoreactivity of macroprolactin by the Ortho Clinical Diagnostics Vitros ECi prolactin immunoassay, establish the most effective method for interpreting the prolactin concentration after PEG-precipitation, and correlate the clinical features of hyperprolactinemia with the presence of macroprolactin
Post-translationally modified muscle-specific ubiquitin ligases as circulating biomarkers in experimental cancer cachexia
Cancer cachexia is a severe wasting syndrome characterized by the progressive loss of lean body mass and systemic inflammation. Up to 80% of cancer patients experience cachexia, with 20-30% of cancer-related deaths directly linked to cachexia. Despite efforts to identify early cachexia and cancer relapse, clinically useful markers are lacking. Recently, we identified the role of muscle-specific ubiquitin ligases Atrogin-1 (MAFbx, FBXO32) and Muscle Ring Finger-1 in the pathogenesis of cardiac atrophy and hypertrophy. We hypothesized that during cachexia, the Atrogin-1 and MuRF1 ubiquitin ligases are released from muscle and migrate to the circulation where they could be detected and serve as a cachexia biomarker. To test this, we induced cachexia in mice using the C26 adenocarcinoma cells or vehicle (control). Body weight, tumor volume, and food consumption were measured from inoculation until ~day 14 to document cachexia. Western blot analysis of serum identified the presence of Atrogin-1 and MuRF1 with unique post-translational modifications consistent with mono- and poly- ubiquitination of Atrogin-1 and MuRF1 found only in cachectic serum. These findings suggest that both increased Atrogin-1 and the presence of unique post-translational modifications may serve as a surrogate marker specific for cachexia
Protein Modification by Deamidation Indicates Variations in Joint Extracellular Matrix Turnover
As extracellular proteins age, they undergo and accumulate nonenzymatic post-translational modifications that cannot be repaired. We hypothesized that these could be used to systemically monitor loss of extracellular matrix due to chronic arthritic diseases such as osteoarthritis (OA). To test this, we predicted sites of deamidation in cartilage oligomeric matrix protein (COMP) and confirmed, by mass spectroscopy, the presence of deamidated (Asp64) and native (Asn64) COMP epitopes (mean 0.95% deamidated COMP (D-COMP) relative to native COMP) in cartilage. An Asp64, D-COMP-specific ELISA was developed using a newly created monoclonal antibody 6-1A12. In a joint replacement study, serum D-COMP (p = 0.017), but not total COMP (p = 0.5), declined significantly after replacement demonstrating a joint tissue source for D-COMP. In analyses of 450 participants from the Johnston County Osteoarthritis Project controlled for age, gender, and race, D-COMP was associated with radiographic hip (p < 0.0001) but not knee (p = 0.95) OA severity. In contrast, total COMP was associated with radiographic knee (p < 0.0001) but not hip (p = 0.47) OA severity. D-COMP was higher in soluble proteins extracted from hip cartilage proximal to OA lesions compared with remote from lesions (p = 0.007) or lesional and remote OA knee (p < 0.01) cartilage. Total COMP in cartilage did not vary by joint site or proximity to the lesion. This study demonstrates the presence of D-COMP in articular cartilage and the systemic circulation, and to our knowledge, it is the first biomarker to show specificity for a particular joint site. We believe that enrichment of deamidated epitope in hip OA cartilage indicates a lesser repair response of hip OA compared with knee OA cartilage
Automated Speckle Interferometry of Known Binaries
Astronomers have been measuring the separations and position angles between
the two components of binary stars since William Herschel began his
observations in 1781. In 1970, Anton Labeyrie pioneered a method, speckle
interferometry, that overcomes the usual resolution limits induced by
atmospheric turbulence by taking hundreds or thousands of short exposures and
reducing them in Fourier space. Our 2022 automation of speckle interferometry
allowed us to use a fully robotic 1.0-meter PlaneWave Instruments telescope,
located at the El Sauce Observatory in the Atacama Desert of Chile, to obtain
observations of many known binaries with established orbits. The long-term
objective of these observations is to establish the precision, accuracy, and
limitations of this telescope's automated speckle interferometry measurements.
This paper provides an early overview of the Known Binaries Project and provide
example results on a small-separation (0.27") binary, WDS 12274-2843 B 228
an international multi center serum protein electrophoresis accuracy and m protein isotyping study part i factors impacting limit of quantitation of serum protein electrophoresis
AbstractBackgroundSerum protein electrophoresis (SPEP) is used to quantify the serum monoclonal component or M-protein, for diagnosis and monitoring of monoclonal gammopathies. Significant imprecision and inaccuracy pose challenges in reporting small M-proteins. Using therapeutic monoclonal antibody-spiked sera and a pooled beta-migrating M-protein, we aimed to assess SPEP limitations and variability across 16 laboratories in three continents.MethodsSera with normal, hypo- or hypergammaglobulinemia were spiked with daratumumab, Dara (cathodal migrating), or elotuzumab, Elo (central-gamma migrating), with concentrations from 0.125 to 10 g/L (n = 62) along with a beta-migrating sample (n = 9). Provided with total protein (reverse biuret, Siemens), laboratories blindly analyzed samples according to their SPEP and immunofixation (IFE) or immunosubtraction (ISUB) standard operating procedures. Sixteen laboratories reported the perpendicular drop (PD) method of gating the M-protein, while 10 used tangent skimming (TS). A mean percent recovery range of 80%–120% was set as acceptable. The inter-laboratory %CV was calculated.ResultsGamma globulin background, migration pattern and concentration all affect the precision and accuracy of quantifying M-proteins by SPEP. As the background increases, imprecision increases and accuracy decreases leading to overestimation of M-protein quantitation especially evident in hypergamma samples, and more prominent with PD. Cathodal migrating M-proteins were associated with less imprecision and higher accuracy compared to central-gamma migrating M-proteins, which is attributed to the increased gamma background contribution in M-proteins migrating in the middle of the gamma fraction. There is greater imprecision and loss of accuracy at lower M-protein concentrations.ConclusionsThis study suggests that quantifying exceedingly low concentrations of M-proteins, although possible, may not yield adequate accuracy and precision between laboratories