5,166 research outputs found

    Resolving depth measurement ambiguity with commercially available range imaging cameras

    Get PDF
    Time-of-flight range imaging is typically performed with the amplitude modulated continuous wave method. This involves illuminating a scene with amplitude modulated light. Reflected light from the scene is received by the sensor with the range to the scene encoded as a phase delay of the modulation envelope. Due to the cyclic nature of phase, an ambiguity in the measured range occurs every half wavelength in distance, thereby limiting the maximum useable range of the camera. This paper proposes a procedure to resolve depth ambiguity using software post processing. First, the range data is processed to segment the scene into separate objects. The average intensity of each object can then be used to determine which pixels are beyond the non-ambiguous range. The results demonstrate that depth ambiguity can be resolved for various scenes using only the available depth and intensity information. This proposed method reduces the sensitivity to objects with very high and very low reflectance, normally a key problem with basic threshold approaches. This approach is very flexible as it can be used with any range imaging camera. Furthermore, capture time is not extended, keeping the artifacts caused by moving objects at a minimum. This makes it suitable for applications such as robot vision where the camera may be moving during captures. The key limitation of the method is its inability to distinguish between two overlapping objects that are separated by a distance of exactly one non-ambiguous range. Overall the reliability of this method is higher than the basic threshold approach, but not as high as the multiple frequency method of resolving ambiguity

    A quantum mechanical approach to establishing the magnetic field orientation from a maser Zeeman profile

    Full text link
    Recent comparisons of magnetic field directions derived from maser Zeeman splitting with those derived from continuum source rotation measures have prompted new analysis of the propagation of the Zeeman split components, and the inferred field orientation. In order to do this, we first review differing electric field polarization conventions used in past studies. With these clearly and consistently defined, we then show that for a given Zeeman splitting spectrum, the magnetic field direction is fully determined and predictable on theoretical grounds: when a magnetic field is oriented away from the observer, the left-hand circular polarization is observed at higher frequency and the right-hand polarization at lower frequency. This is consistent with classical Lorentzian derivations. The consequent interpretation of recent measurements then raises the possibility of a reversal between the large-scale field (traced by rotation measures) and the small-scale field (traced by maser Zeeman splitting).Comment: 10 pages, 5 Figures, accepted for publication in MNRA

    HI Absorption Toward HII Regions at Small Galactic Longitudes

    Get PDF
    We make a comprehensive study of HI absorption toward HII regions located within Galactic longitudes less than 10 degrees. Structures in the extreme inner Galaxy are traced using the longitude-velocity space distribution of this absorption. We find significant HI absorption associated with the Near and Far 3kpc Arms, the Connecting Arm, Banias Clump 1 and the H I Tilted Disk. We also constrain the line of sight distances to HII regions, by using HI absorption spectra together with the HII region velocities measured by radio recombination lines.Comment: Complete figure set available in online version of journal. Accepted by ApJ August 8, 201

    Advantages of 3D time-of-flight range imaging cameras in machine vision applications

    Get PDF
    Machine vision using image processing of traditional intensity images is in wide spread use. In many situations environmental conditions or object colours or shades cannot be controlled, leading to difficulties in correctly processing the images and requiring complicated processing algorithms. Many of these complications can be avoided by using range image data, instead of intensity data. This is because range image data represents the physical properties of object location and shape, practically independently of object colour or shading. The advantages of range image processing are presented, along with three example applications that show how robust machine vision results can be obtained with relatively simple range image processing in real-time applications

    Rapid and efficient stable gene transfer to mesenchymal stromal cells using a modified foamy virus vector

    Get PDF
    Mesenchymal stromal cells (MSCs) hold great promise for regenerative medicine. Stable ex vivo gene transfer to MSCs could improve the outcome and scope of MSC therapy, but current vectors require multiple rounds of transduction, involve genotoxic viral promoters and/or the addition of cytotoxic cationic polymers in order to achieve efficient transduction. We describe a self-inactivating foamy virus vector (FVV), incorporating the simian macaque foamy virus envelope and using physiological promoters, which efficiently transduces murine MSCs (mMSCs) in a single-round. High and sustained expression of the transgene, whether GFP or the lysosomal enzyme, arylsulphatase A (ARSA), was achieved. Defining MSC characteristics (surface marker expression and differentiation potential), as well as long-term engraftment and distribution in the murine brain following intracerebroventricular delivery, are unaffected by FVV transduction. Similarly, greater than 95% of human MSCs (hMSCs) were stably transduced using the same vector, facilitating human application. This work describes the best stable gene transfer vector available for mMSCs and hMSCs

    Application of Thermal Storage, Peak Shaving and Cogeneration for Hospitals

    Get PDF
    Energy costs of hospitals can be managed by employing various strategies to control peak electrical demand (KW) while at the same time providing additional security of operation in the event that an equipment failure or a disruption of power from the electric utility occurs. Some electric utilities offer their customers demand (KW) reduction rate incentives. Many hospitals have additional emergency back-up needs for electrical energy. Demand is relatively constant in many hospitals due to high internal loads. These factors coupled with the present competitive alternate fuel market and present opportunities for hospitals to significantly reduce operating costs and provide additional stand-by or back-up electric sources. This paper employs a hospital case study to define and illustrate three energy planning strategies applicable to hospitals. These strategies are peak shaving, thermal storage, cogeneration and/or paralleling with the electric utility

    High velocity clouds in the Galactic All Sky Survey I. Catalogue

    Get PDF
    We present a catalogue of high-velocity clouds (HVCs) from the Galactic All Sky Survey (GASS) of southern-sky neutral hydrogen, which has 57 mK sensitivity and 1 km/s velocity resolution and was obtained with the Parkes Telescope. Our catalogue has been derived from the stray-radiation corrected second release of GASS. We describe the data and our method of identifying HVCs and analyse the overall properties of the GASS population. We catalogue a total of 1693 HVCs at declinations < 0 deg, including 1111 positive velocity HVCs and 582 negative velocity HVCs. Our catalogue also includes 295 anomalous velocity clouds (AVCs). The cloud line-widths of our HVC population have a median FWHM of ~19 km/s, which is lower than found in previous surveys. The completeness of our catalogue is above 95% based on comparison with the HIPASS catalogue of HVCs, upon which we improve with an order of magnitude in spectral resolution. We find 758 new HVCs and AVCs with no HIPASS counterpart. The GASS catalogue will shed an unprecedented light on the distribution and kinematic structure of southern-sky HVCs, as well as delve further into the cloud populations that make up the anomalous velocity gas of the Milky Way.Comment: 21 pages, 14 figures, accepted for publication in ApJ

    The VLA Galactic Plane Survey

    Get PDF
    The VLA Galactic Plane Survey (VGPS) is a survey of HI and 21-cm continuum emission in the Galactic plane between longitude 18 degrees 67 degr. with latitude coverage from |b| < 1.3 degr. to |b| < 2.3 degr. The survey area was observed with the Very Large Array (VLA) in 990 pointings. Short-spacing information for the HI line emission was obtained by additional observations with the Green Bank Telescope (GBT). HI spectral line images are presented with a resolution of 1 arcmin x 1 arcmin x 1.56 km/s (FWHM) and rms noise of 2 K per 0.824 km/s channel. Continuum images made from channels without HI line emission have 1 arcmin (FWHM) resolution. VGPS images are compared with images from the Canadian Galactic Plane Survey (CGPS) and the Southern Galactic Plane Survey (SGPS). In general, the agreement between these surveys is impressive, considering the differences in instrumentation and image processing techniques used for each survey. The differences between VGPS and CGPS images are small, < 6 K (rms) in channels where the mean HI brightness temperature in the field exceeds 80 K. A similar degree of consistency is found between the VGPS and SGPS. The agreement we find between arcminute resolution surveys of the Galactic plane is a crucial step towards combining these surveys into a single uniform dataset which covers 90% of the Galactic disk: the International Galactic Plane Survey (IGPS). The VGPS data will be made available on the World Wide Web through the Canadian Astronomy Data Centre (CADC).Comment: Accepted for publication in The Astronomical Journal. 41 pages, 13 figures. For information on data release, colour images etc. see http://www.ras.ucalgary.ca/VGP

    Combined antiapoptotic and antioxidant approach to acute neuroprotection for stroke in hypertensive rats

    Get PDF
    We hypothesized that targeting key points in the ischemic cascade with combined neuroglobin (Ngb) overexpression and c-jun N-terminal kinase (JNK) inhibition (SP600125) would offer greater neuroprotection than single treatment after in vitro hypoxia/reoxygenation and in a randomized, blinded in vivo experimental stroke study using a clinically relevant rat strain. Male spontaneously hypertensive stroke-prone rats underwent transient middle cerebral artery occlusion (tMCAO) and were divided into the following groups: tMCAO; tMCAO+control GFP-expressing canine adenovirus-2, CAVGFP; tMCAO+Ngb-expressing CAV-2, CAVNgb; tMCAO+SP600125; tMCAO+CAVNgb+SP600125; or sham procedure. Rats were assessed till day 14 for neurologic outcome before infarct determination. In vitro, combined lentivirus-mediated Ngb overexpression+SP600125 significantly reduced oxidative stress and apoptosis compared with single treatment(s) after hypoxia/reoxygenation in B50 cells. In vivo, infarct volume was significantly reduced by CAVNgb, SP600125, and further by CAVNgb+SP600125. The number of Ngb-positive cells in the peri-infarct cortex and striatum was significantly increased 14 days after tMCAO in animals receiving CAVNgb. Neurologic outcome, measured using a 32-point neurologic score, significantly improved with CAVNgb+SP600125 compared with single treatments at 14 days after tMCAO. Combined Ngb overexpression with JNK inhibition reduced hypoxia/reoxygenation-induced oxidative stress and apoptosis in cultured neurons and reduced infarct and improved neurologic outcome more than single therapy after in vivo experimental stroke in hypertensive rats
    corecore