377 research outputs found

    RB loss contributes to aggressive tumor phenotypes in MYC-driven triple negative breast cancer

    Get PDF
    Triple negative breast cancer (TNBC) is characterized by multiple genetic events occurring in concert to drive pathogenic features of the disease. Here we interrogated the coordinate impact of p53, RB, and MYC in a genetic model of TNBC, in parallel with the analysis of clinical specimens. Primary mouse mammary epithelial cells (mMEC) with defined genetic features were used to delineate the combined action of RB and/or p53 in the genesis of TNBC. In this context, the deletion of either RB or p53 alone and in combination increased the proliferation of mMEC; however, the cells did not have the capacity to invade in matrigel. Gene expression profiling revealed that loss of each tumor suppressor has effects related to proliferation, but RB loss in particular leads to alterations in gene expression associated with the epithelial-to-mesenchymal transition. The overexpression of MYC in combination with p53 loss or combined RB/p53 loss drove rapid cell growth. While the effects of MYC overexpression had a dominant impact on gene expression, loss of RB further enhanced the deregulation of a gene expression signature associated with invasion. Specific RB loss lead to enhanced invasion in boyden chambers assays and gave rise to tumors with minimal epithelial characteristics relative to RB-proficient models. Therapeutic screening revealed that RB-deficient cells were particularly resistant to agents targeting PI3K and MEK pathway. Consistent with the aggressive behavior of the preclinical models of MYC overexpression and RB loss, human TNBC tumors that express high levels of MYC and are devoid of RB have a particularly poor outcome. Together these results underscore the potency of tumor suppressor pathways in specifying the biology of breast cancer. Further, they demonstrate that MYC overexpression in concert with RB can promote a particularly aggressive form of TNB

    The Impact of the C-Terminal Domain on the Interaction of Human DNA Topoisomerase II ฮฑ and ฮฒ with DNA

    Get PDF
    <b>Background</b> Type II DNA topoisomerases are essential, ubiquitous enzymes that act to relieve topological problems arising in DNA from normal cellular activity. Their mechanism of action involves the ATP-dependent transport of one DNA duplex through a transient break in a second DNA duplex; metal ions are essential for strand passage. Humans have two isoforms, topoisomerase IIฮฑ and topoisomerase IIฮฒ, that have distinct roles in the cell. The C-terminal domain has been linked to isoform specific differences in activity and DNA interaction. <b>Methodology/Principal Findings</b> We have investigated the role of the C-terminal domain in the binding of human topoisomerase IIฮฑ and topoisomerase IIฮฒ to DNA in fluorescence anisotropy assays using full length and C-terminally truncated enzymes. We find that the C-terminal domain of topoisomerase IIฮฒ but not topoisomerase IIฮฑ affects the binding of the enzyme to the DNA. The presence of metal ions has no effect on DNA binding. Additionally, we have examined strand passage of the full length and truncated enzymes in the presence of a number of supporting metal ions and find that there is no difference in relative decatenation between isoforms. We find that calcium and manganese, in addition to magnesium, can support strand passage by the human topoisomerase II enzymes. <b>Conclusions/Significance</b> The C-terminal domain of topoisomerase IIฮฒ, but not that of topoisomerase IIฮฑ, alters the enzyme's KD for DNA binding. This is consistent with previous data and may be related to the differential modes of action of the two isoforms in vivo. We also show strand passage with different supporting metal ions for human topoisomerase IIฮฑ or topoisomerase IIฮฒ, either full length or C-terminally truncated. They all show the same preferences, whereby Mg > Ca > Mn

    Collective Power to Create Political Change: Increasing the Political Efficacy and Engagement of Social Workers

    Get PDF
    Because social workers are called to challenge social injustices and create systemic change to support the well-being of individuals and communities, it is essential that social workers develop political efficacy: belief that the political system can work and they can influence the system. This study explored the impact of an intensive political social work curriculum on political efficacy and planned political engagement among social work students and practitioners. The findings suggest this model of delivering a political social work curriculum effectively increases internal, external, and overall political efficacy, and that increasing political efficacy has promise for increasing future political engagement

    Physical and Thermal Properties Evaluated of Teflon FEP Retrieved From the Hubble Space Telescope During Three Servicing Missions

    Get PDF
    Mechanical properties of aluminized Teflon fluorinated ethylene propylene (FEP) thermal control materials on the Hubble Space Telescope (HST) exposed to low Earth orbit for up to 9.7 years have significantly degraded, with extensive cracking occurring on orbit. The NASA Glenn Research Center and the NASA Goddard Space Flight Center have collaborated on analyzing the physical and thermal properties of aluminized FEP (FEP-Al, DuPont) materials retrieved in December 1999 during HST's third servicing mission (SM3A). Comparisons have been made to properties of FEP-Al retrieved during the first and second HST servicing missions, SM1 and SM2, in order to determine degradation processes for FEP on HST

    Direct Observation of Strand Passage by DNA-Topoisomerase and Its Limited Processivity

    Get PDF
    Type-II DNA topoisomerases resolve DNA entanglements such as supercoils, knots and catenanes by passing one segment of DNA duplex through a transient enzyme-bridged double-stranded break in another segment. The ATP-dependent passage reaction has previously been demonstrated at the single-molecule level, showing apparent processivity at saturating ATP. Here we directly observed the strand passage by human topoisomerase IIฮฑ, after winding a pair of fluorescently stained DNA molecules with optical tweezers for 30 turns into an X-shaped braid. On average 0.51ยฑ0.33 ยตm (11ยฑ6 turns) of a braid was unlinked in a burst of reactions taking 8ยฑ4 s, the unlinked length being essentially independent of the enzyme concentration between 0.25โ€“37 pM. The time elapsed before the start of processive unlinking decreased with the enzyme concentration, being โˆผ100 s at 3.7 pM. These results are consistent with a scenario where the enzyme binds to one DNA for a period of โˆผ10 s, waiting for multiple diffusional encounters with the other DNA to transport it across the break โˆผ10 times, and then dissociates from the binding site without waiting for the exhaustion of transportable DNA segments

    Deletion of Forkhead Box M1 Transcription Factor from Respiratory Epithelial Cells Inhibits Pulmonary Tumorigenesis

    Get PDF
    The Forkhead Box m1 (Foxm1) protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1โˆ’/โˆ’ mice) prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT). Decreased lung tumorigenesis in epFoxm1โˆ’/โˆ’ mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2ฮฑ (TOPO-2ฮฑ), a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2ฮฑ mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2ฮฑ promoter region, indicating that TOPO-2ฮฑ is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2ฮฑ expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy

    The Impact of the Human DNA Topoisomerase II C-Terminal Domain on Activity

    Get PDF
    Type II DNA topoisomerases (topos) are essential enzymes needed for the resolution of topological problems that occur during DNA metabolic processes. Topos carry out an ATP-dependent strand passage reaction whereby one double helix is passed through a transient break in another. Humans have two topoII isoforms, alpha and beta, which while enzymatically similar are differentially expressed and regulated, and are thought to have different cellular roles. The C-terminal domain (CTD) of the enzyme has the most diversity, and has been implicated in regulation. We sought to investigate the impact of the CTD domain on activity.We have investigated the role of the human topoII C-terminal domain by creating constructs encoding C-terminally truncated recombinant topoIIalpha and beta and topoIIalpha+beta-tail and topoIIbeta+alpha-tail chimeric proteins. We then investigated function in vivo in a yeast system, and in vitro in activity assays. We find that the C-terminal domain of human topoII isoforms is needed for in vivo function of the enzyme, but not needed for cleavage activity. C-terminally truncated enzymes had similar strand passage activity to full length enzymes, but the presence of the opposite C-terminal domain had a large effect, with the topoIIalpha-CTD increasing activity, and the topoIIbeta-CTD decreasing activity.In vivo complementation data show that the topoIIalpha C-terminal domain is needed for growth, but the topoIIbeta isoform is able to support low levels of growth without a C-terminal domain. This may indicate that topoIIbeta has an additional localisation signal. In vitro data suggest that, while the lack of any C-terminal domain has little effect on activity, the presence of either the topoIIalpha or beta C-terminal domain can affect strand passage activity. Data indicates that the topoIIbeta-CTD may be a negative regulator. This is the first report of in vitro data with chimeric human topoIIs

    A-Site Residues Move Independently from P-Site Residues in all-Atom Molecular Dynamics Simulations of the 70S Bacterial Ribosome

    Get PDF
    The ribosome is a large macromolecular machine, and correlated motion between residues is necessary for coordinating function across multiple protein and RNA chains. We ran two all-atom, explicit solvent molecular dynamics simulations of the bacterial ribosome and calculated correlated motion between residue pairs by using mutual information. Because of the short timescales of our simulation (ns), we expect that dynamics are largely local fluctuations around the crystal structure. We hypothesize that residues that show coupled dynamics are functionally related, even on longer timescales. We validate our model by showing that crystallographic B-factors correlate well with the entropy calculated as part of our mutual information calculations. We reveal that A-site residues move relatively independently from P-site residues, effectively insulating A-site functions from P-site functions during translation

    Epstein-Barr Virus BGLF4 Kinase Retards Cellular S-Phase Progression and Induces Chromosomal Abnormality

    Get PDF
    Epstein-Barr virus (EBV) induces an uncoordinated S-phase-like cellular environment coupled with multiple prophase-like events in cells replicating the virus. The EBV encoded Ser/Thr kinase BGLF4 has been shown to induce premature chromosome condensation through activation of condensin and topoisomerase II and reorganization of the nuclear lamina to facilitate the nuclear egress of nucleocapsids in a pathway mimicking Cdk1. However, the observation that RB is hyperphosphorylated in the presence of BGLF4 raised the possibility that BGLF4 may have a Cdk2-like activity to promote S-phase progression. Here, we investigated the regulatory effects of BGLF4 on cell cycle progression and found that S-phase progression and DNA synthesis were interrupted by BGLF4 in mammalian cells. Expression of BGLF4 did not compensate Cdk1 defects for DNA replication in S. cerevisiae. Using time-lapse microscopy, we found the fate of individual HeLa cells was determined by the expression level of BGLF4. In addition to slight cell growth retardation, BGLF4 elicits abnormal chromosomal structure and micronucleus formation in 293 and NCP-TW01 cells. In Saos-2 cells, BGLF4 induced the hyperphosphorylation of co-transfected RB, while E2F1 was not released from RB-E2F1 complexes. The E2F1 regulated activities of the cyclin D1 and ZBRK1 promoters were suppressed by BGLF4 in a dose dependent manner. Detection with phosphoamino acid specific antibodies revealed that, in addition to Ser780, phosphorylation of the DNA damage-responsive Ser612 on RB was enhanced by BGLF4. Taken together, our study indicates that BGLF4 may directly or indirectly induce a DNA damage signal that eventually interferes with host DNA synthesis and delays S-phase progression
    • โ€ฆ
    corecore