305 research outputs found

    Quality of Life Changes Following Peripheral Blood Stem Cell Transplantation and Participation in a Mixed-Type, Moderate-intensity, Exercise Program

    Get PDF
    Summary:The purpose of this investigation was to evaluate the impact of undertaking peripheral blood stem cell transplantation (PBST) on quality of life (QoL), and to determine the effect of participating in a mixed-type, moderate-intensity exercise program on QoL. It was also an objective to determine the relationship between peak aerobic capacity and QoL in PBST patients. QoL was assessed via the CARES questionnaire and peak aerobic capacity by a maximal graded treadmill test, pretransplant (PI), post transplant (PII) and following a 12-week intervention period (PIII). At PII, 12 patients were divided equally into a control or exercise intervention group. Undergoing a PBST was associated with a statistically but not clinically significant decline in QoL (P<0.05). Following the intervention, exercising patients demonstrated an improved QoL when compared with pretransplant ratings (P<0.01) and nonexercising transplant patients (P<0.05). Moreover, peak aerobic capacity and QoL were correlated (P<0.05). The findings demonstrated that exercise participation following oncology treatment is associated with a reduction in the number and severity of endorsed problems, which in turn leads to improvements in global, physical and psychosocial QoL. Furthermore, a relationship between fitness and QoL exists, with those experiencing higher levels of fitness also demonstrating higher QoL.Bone Marrow Transplantation (2004) 33, 553-558. doi:10.1038/sj.bmt.1704378 Published online 12 January 200

    KCa1.1, a calcium-activated potassium channel subunit alpha 1, is targeted by miR-17-5p and modulates cell migration in malignant pleural mesothelioma

    Get PDF
    © 2016 Lin et al. Background: Malignant pleural mesothelioma (MPM) is an aggressive, locally invasive, cancer elicited by asbestos exposure and almost invariably a fatal diagnosis. To date, we are one of the leading laboratory that compared microRNA expression profiles in MPM and normal mesothelium samples in order to identify dysregulated microRNAs with functional roles in mesothelioma. We interrogated a significant collection of MPM tumors and normal pleural samples in our biobank in search for novel therapeutic targets. Methods: Utilizing mRNA-microRNA correlations based on differential gene expression using Gene Set Enrichment Analysis (GSEA), we systematically combined publicly available gene expression datasets with our own MPM data in order to identify candidate targets for MPM therapy. Results: We identified enrichment of target binding sites for the miR-17 and miR-30 families in both MPM tumors and cell lines. RT-qPCR revealed that members of both families were significantly downregulated in MPM tumors and cell lines. Interestingly, lower expression of miR-17-5p (P = 0.022) and miR-20a-5p (P = 0.026) was clearly associated with epithelioid histology. We interrogated the predicted targets of these differentially expressed microRNA families in MPM cell lines, and identified KCa1.1, a calcium-activated potassium channel subunit alpha 1 encoded by the KCNMA1 gene, as a target of miR-17-5p. KCa1.1 was overexpressed in MPM cells compared to the (normal) mesothelial line MeT-5A, and was also upregulated in patient tumor samples compared to normal mesothelium. Transfection of MPM cells with a miR-17-5p mimic or KCNMA1-specific siRNAs reduced mRNA expression of KCa1.1 and inhibited MPM cell migration. Similarly, treatment with paxilline, a small molecule inhibitor of KCa1.1, resulted in suppression of MPM cell migration. Conclusion: These functional data implicating KCa1.1 in MPM cell migration support our integrative approach using MPM gene expression datasets to identify novel and potentially druggable targets

    CD147 mediates intrahepatic leukocyte aggregation and determines the extent of liver injury

    Get PDF
    Background: Chronic inflammation is the driver of liver injury and results in progressive fibrosis and eventual cirrhosis with consequences including both liver failure and liver cancer. We have previously described increased expression of the highly multifunctional glycoprotein CD147 in liver injury. This work describes a novel role of CD147 in liver inflammation and the importance of leukocyte aggregates in determining the extent of liver injury. Methods: Non-diseased, progressive injury, and cirrhotic liver from humans and mice were examined using a mAb targeting CD147. Inflammatory cell subsets were assessed by multiparameter flow cytometry. Results: In liver injury, we observe abundant, intrahepatic leukocyte clusters defined as ≥5 adjacent CD45+ cells which we have termed “leukocyte aggregates”. We have shown that these leukocyte aggregates have a significant effect in determining the extent of liver injury. If CD147 is blocked in vivo, these leukocyte aggregates diminish in size and number, together with a marked significant reduction in liver injury including fibrosis. This is accompanied by no change in overall intrahepatic leukocyte numbers. Further, blocking of aggregation formation occurs prior to an appreciable increase in inflammatory markers or fibrosis. Additionally, there were no observed, “off-target” or unpredicted effects in targeting CD147. Conclusion: CD147 mediates leukocyte aggregation which is associated with the development of liver injury. This is not a secondary effect, but a cause of injury as aggregate formation proceeds other markers of injury. Leukocyte aggregation has been previously described in inflammation dating back over many decades. Here we demonstrate that leukocyte aggregates determine the extent of liver injury

    First Results from The GlueX Experiment

    Get PDF
    The GlueX experiment at Jefferson Lab ran with its first commissioning beam in late 2014 and the spring of 2015. Data were collected on both plastic and liquid hydrogen targets, and much of the detector has been commissioned. All of the detector systems are now performing at or near design specifications and events are being fully reconstructed, including exclusive production of π0\pi^{0}, η\eta and ω\omega mesons. Linearly-polarized photons were successfully produced through coherent bremsstrahlung and polarization transfer to the ρ\rho has been observed.Comment: 8 pages, 6 figures, Invited contribution to the Hadron 2015 Conference, Newport News VA, September 201

    A superconducting thermal switch with ultrahigh impedance for interfacing superconductors to semiconductors

    Get PDF
    A number of current approaches to quantum and neuromorphic computing use superconductors as the basis of their platform or as a measurement component, and will need to operate at cryogenic temperatures. Semiconductor systems are typically proposed as a top-level control in these architectures, with low-temperature passive components and intermediary superconducting electronics acting as the direct interface to the lowest-temperature stages. The architectures, therefore, require a low-power superconductor-semiconductor interface, which is not currently available. Here we report a superconducting switch that is capable of translating low-voltage superconducting inputs directly into semiconductor-compatible (above 1,000 mV) outputs at kelvin-scale temperatures (1 K or 4 K). To illustrate the capabilities in interfacing superconductors and semiconductors, we use it to drive a light-emitting diode (LED) in a photonic integrated circuit, generating photons at 1 K from a low-voltage input and detecting them with an on-chip superconducting single-photon detector. We also characterize our device's timing response (less than 300 ps turn-on, 15 ns turn-off), output impedance (greater than 1 M{\Omega}), and energy requirements (0.18 fJ/um^2, 3.24 mV/nW)
    corecore