181 research outputs found

    The effect of different post-exercise beverages with food on ad libitum fluid recovery, nutrient provision, and subsequent athletic performance

    Get PDF
    This study investigated the effect of consuming either water or a carbohydrate (CHO)-electrolyte sports beverage (‘Sports Drink’) ad libitum with food during a 4 h post-exercise recovery period on fluid restoration, nutrient provision and subsequent endurance cycling performance. On two occasions, 16 endurance-trained cyclists; 8 male [M] (age: 31 ± 9 y; VO2max: 54 ± 6 mL·kg−1·min−1) and 8 female [F] (age: 33 ± 8 y; VO2max: 50 ± 7 mL·kg−1·min−1); lost 2.3 ± 0.3% and 1.6 ± 0.3% of their body mass (BM), respectively during 1 h of fixed-intensity cycling. Participants then had ad libitum access to either Water or Sports Drink and food for the first 195 min of a 4 h recovery period. At the conclusion of the recovery period, participants completed a cycling performance test consisting of a 45 min fixed-intensity pre-load and an incremental test to volitional exhaustion (peak power output, PPO). Beverage intake; total water/nutrient intake; and indicators of fluid recovery (BM, urine output, plasma osmolality [POSM]) were assessed periodically throughout trials. Participants returned to a similar state of net positive fluid balance prior to recommencing exercise, regardless of the beverage provided (Water: +0.4 ± 0.5 L; Sports Drink: +0.3 ± 0.3 L, p = 0.529). While Sports Drink increased post-exercise energy (M: +1.8 ± 1.0 MJ; F: +1.3 ± 0.5 MJ) and CHO (M: +114 ± 31 g; F: +84 ± 25 g) intake (i.e. total from food and beverage) (p's < 0.001), this did not improve subsequent endurance cycling performance (Water: 337 ± 40 W [M] and 252 ± 50 W [F]; Sports Drink: 340 ± 40 W [M] and 258 ± 47 W [F], p = 0.242). Recovery beverage recommendations should consider the post-exercise environment (i.e. the availability of food), an individual's tolerance for food and fluid pre−/post-exercise, the immediate requirements for refuelling (i.e. CHO demands of the activity) and the athlete's overall dietary goals.Full Tex

    Fluid, Energy and Nutrient Recovery via Ad Libitum Intake of Different Commercial Beverages and Food in Female Athletes

    Get PDF
    This study investigated the effect of consuming different commercial beverages with food ad libitum after exercise on fluid, energy, and nutrient recovery in trained females. On 4 separate occasions, 8 females (body mass (BM): 61.8 ± 10.7 kg; maximal oxygen uptake: 46.3 ± 7.5 mL·kg−1·min−1) lost 2.0% ± 0.3% BM cycling at ∼75% maximal oxygen uptake before completing a 4-h recovery period with ad libitum access to 1 of 4 beverages: Water, Powerade (Sports Drink), Up & Go Reduced Sugar (Lower Sugar (LS)-MILK) or Up & Go Energize (Higher Protein (HP)-MILK). Participants also had two 15-min opportunities to access food within the first 2 h of the recovery period. Beverage intake, total water/nutrient intake, and indicators of fluid recovery (BM, urine output, plasma osmolality), gastrointestinal tolerance and palatability were assessed periodically. While total water intake (from food and beverage) (Water: 1918 ± 580 g; Sports Drink: 1809 ± 338 g; LS-MILK: 1458 ± 431 g; HP-MILK: 1523 ± 472 g; p = 0.010) and total urine output (Water: 566 ± 314 g; Sports Drink: 459 ± 290 g; LS-MILK: 220 ± 53 g; HP-MILK: 230 ± 117 g; p = 0.009) differed significantly by beverage, the quantity of ingested water retained was similar across treatments (Water: 1352 ± 462 g; Sports Drink: 1349 ± 407 g; LS-MILK: 1238 ± 400 g; HP-MILK: 1293 ± 453 g; p = 0.691). Total energy intake (from food and beverage) increased in proportion to the energy density of the beverage (Water: 4129 ± 1080 kJ; Sports Drink: 5167 ± 643 kJ; LS-MILK: 6019 ± 1925 kJ; HP-MILK: 7096 ± 2058 kJ; p = 0.014). When consumed voluntarily and with food, different beverages promote similar levels of fluid recovery, but alter energy/nutrient intakes. Providing access to food and understanding the longer-term dietary goals of female athletes are important considerations when recommending a recovery beverage.No Full Tex

    Effect of Drinking Rate on the Retention of Water or Milk Following Exercise-Induced Dehydration

    Get PDF
    This study investigated the effect of drinking rate on fluid retention of milk and water following exercise-induced dehydration. In Part A, 12 male participants lost 1.9% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water or low-fat milk equal to the volume of sweat lost during exercise was provided. Beverages were ingested over 30 or 90 min, resulting in four beverage treatments: water 30 min, water 90 min, milk 30 min, and milk 90 min. In Part B, 12 participants (nine males and three females) lost 2.0% ± 0.3% body mass through cycle exercise on four occasions. Following exercise, plain water equal to the volume of sweat lost during exercise was provided. Water was ingested over 15 min (DR15), 45 min (DR45), or 90 min (DR90), with either DR15 or DR45 repeated. In both trials, nude body mass, urine volume, urine specific gravity and osmolality, plasma osmolality, and subjective ratings of gastrointestinal symptoms were obtained preexercise and every hour for 3 hr after the onset of drinking. In Part A, no effect of drinking rate was observed on the proportion of fluid retained, but milk retention was greater (p

    The Effect of Cannabidiol on Subjective Responses to Endurance Exercise: A Randomised Controlled Trial

    Get PDF
    BACKGROUND: Exercise is known to improve health. However, it can be unpleasant, often inducing negative feelings, or 'affect'. Cannabidiol (CBD), a non-intoxicating constituent of the cannabis plant, has been reported to enhance the subjective experience of exercise; specifically, in trained individuals performing fixed-intensity endurance activity. Here, we investigated the effects of CBD on subjective responses to exercise under more ecologically valid conditions; namely, in recreationally active individuals performing self-paced endurance activity.METHODS: A randomised, double-blind, placebo-controlled, crossover trial was conducted at Griffith University between July 17 and August 28, 2023. Griffith University students studying sports nutrition were invited to take part, with eligible volunteers ≥ 18 years of age and able to perform endurance exercise. Participants ingested placebo or 150 mg CBD in two soft-gel capsules 90 min before completing a self-paced 25-lap (10 km) run around an outdoor athletics track (400 m, synthetic). The primary outcomes were affective valence during exercise, assessed on completion of laps 6, 12, 18 and 24 using the 'Feelings Scale', and positive and negative affect, assessed at baseline, pre-run and post-run using the 'Positive and Negative Affect Schedule'. Exercise enjoyment, motivation and self-efficacy, the core features of the 'runner's high' (i.e., euphoria, pain, anxiety, sedation), perceived exertion and run time were also assessed.RESULTS: Fifty-two participants were randomised and 51 were included in the final sample (n = 22 female; 22 [21-25] years). Exercise induced negative affect (i.e., at the time of undertaking) and increased pain. CBD did not counteract either response. In fact, CBD had no significant effects on any of the outcomes measured. In contrast, exercise, once completed, increased positive affect, and decreased negative affect and anxiety.CONCLUSIONS: CBD (150 mg, oral) does not appear to enhance the subjective experience of self-paced endurance exercise in recreationally active individuals. Nor, however, does it appear to compromise it. These findings suggest that CBD use is safe under exercise conditions and unlikely to impede physical activity participation. Our study also reaffirms the powerful mood-enhancing effects of exercise.TRIAL REGISTRATION: Registered with the Australian New Zealand Clinical Trials Registry ( www.anzctr.org.au ) on May 31, 2023 (Trial ID: ACTRN12623000593639).</p
    • …
    corecore