21 research outputs found

    Nutritional and functional properties of a complementary food based on Kenyan amaranth grain (Amaranthus cruentus)

    Get PDF
    The objective of this study was to determine the nutritional and functional properties of Amaranthus cruentus grain grown in Kenya for preparation of a ready-to-eat product that can be recommended as infant complementary food. Amaranth grains were subjected to steeping and steam pre-gelatinization to produce a ready-to-eat nutritious product with improved solubility during reconstitution. The effect of processing on the functional and nutritional properties of amaranth grain was analyzed. Two blends were prepared from raw and processed amaranth grains. Standard procedures of Association of Official Analytical Chemists (AOAC) were used to determine the proximate chemical composition. High Performance Liquid Chromatography (HPLC) was used quantify amino acid, water soluble vitamins, α-tocopherols and phytates, while Atomic Absorption Flame Emission spectrophotometry was used to determine the mineral element composition. Fatty acid composition was determined using Gas Liquid Chromatography (GLC). Tannin composition was determined using vanillin hydrochloric acid method. The overall results indicated that processing amaranth grain did not significantly affect its nutritional and physicochemical properties. Amaranth grain product was rich in protein with 0.5 g/10g of lysine, a limiting amino acid in cereals, and methionine, a limiting amino acid in pulses. The product had good amount 44.4 mg/100g of α-tocopherols important for infant development. The product was also rich in oleic acid (36.3%) and linoleic acid (35.9%) with some amounts of linolenic acid (3.4%) that are important for infant growth. It also had good amounts of minerals of importance such as potassium (324.4 mg/100g), phosphorous (322.8 mg/100g), calcium 189.1 (mg/100g), magnesium (219.5 mg/100g), iron (13.0 mg/100g) and zinc (4.8 mg/100g). Considering amaranth grain product fed to infant three times a day, at a reconstitution of 15% product, the levels of magnesium, manganese and tocopherols were far above the recommended intakes, while protein, phosphorous, iron, zinc, riboflavin and niacin were above the average requirements. Therefore, reconstituting the product with milk would enrich the deficient nutrients, especially for iron and zinc which are crucial nutrients for infants. The processing method is a practical approach aimed at combating the problem of malnutrition among infants and young children in Kenya and other developing countries. The product developed in this study would also be appropriate for use in geriatrics care and also in immuno-compromised individuals. The technique in this study can be easily adopted at both household and village levels to produce high protein-energy weaning food to help enhance the nutritional status of Kenyans

    Nutritional And Functional Properties Of A Complementary Food Based On Kenyan Amaranth Grain ( Amaranthus Cruentus )

    Get PDF
    The objective of this study was to determine the nutritional and functional properties of Amaranthus cruentus grain grown in Kenya for preparation of a ready-to-eat product that can be recommended as infant complementary food. Amaranth grains were subjected to steeping and steam pre-gelatinization to produce a ready-to-eat nutritious product with improved solubility during reconstitution. The effect of processing on the functional and nutritional properties of amaranth grain was analyzed. Two blends were prepared from raw and processed amaranth grains. Standard procedures of Association of Official Analytical Chemists (AOAC) were used to determine the proximate chemical composition. High Performance Liquid Chromatography (HPLC) was used quantify amino acid, water soluble vitamins, α- tocopherols and phytates, while Atomic Absorption Flame Emission spectrophotometry was used to determine the mineral element composition. Fatty acid composition was determined using Gas Liquid Chromatography (GLC). Tannin composition was determined using vanillin hydrochloric acid method. The overall results indicated that processing amaranth grain did not significantly affect its nutritional and physicochemical properties. Amaranth grain product was rich in protein with 0.5 g/10g of lysine, a limiting amino acid in cereals, and methionine, a limiting amino acid in pulses. The product had good amount 44.4 mg/100g of α- tocopherols important for infant development. The product was also rich in oleic acid (36.3%) and linoleic acid (35.9%) with some amounts of linolenic acid (3.4%) that are important for infant growth. It also had good amounts of minerals of importance such as potassium (324.4 mg/100g), phosphorous (322.8 mg/100g), calcium 189.1 (mg/100g), magnesium (219.5 mg/100g), iron (13.0 mg/100g) and zinc (4.8 mg/100g). Considering amaranth grain product fed to infant three times a day, at a reconstitution of 15% product, the levels of magnesium, manganese and tocopherols were far above the recommended intakes, while protein, phosphorous, iron, zinc, riboflavin and niacin were above the average requirements. Therefore, reconstituting the product with milk would enrich the deficient nutrients, especially for iron and zinc which are crucial nutrients for infants. The processing method is a practical approach aimed at combating the problem of malnutrition among infants and young children in Kenya and other developing countries. The product developed in this study would also be appropriate for use in geriatrics care and also in immuno-compromised individuals. The technique in this study can be easily adopted at both household and village levels to produce high protein-energy weaning food to help enhance the nutritional status of Kenyans

    Optimization of the SARS-CoV-2 ARTIC network V4 primers and whole genome sequencing protocol

    No full text
    Introduction: The ARTIC Network's primer set and amplicon-based protocol is one of the most widely used SARS-CoV-2 sequencing protocol. An update to the V3 primer set was released on 18th June 2021 to address amplicon drop-off observed among the Delta variant of concern. Here, we report on an in-house optimization of a modified version of the ARTIC Network V4 protocol that improves SARS-CoV-2 genome recovery in instances where the original V4 pooling strategy was characterized by amplicon drop-offs. Methods: We utilized a matched set of 43 clinical samples and serially diluted positive controls that were amplified by ARTIC V3, V4 and optimized V4 primers and sequenced using GridION from the Oxford Nanopore Technologies'. Results: We observed a 0.5% to 46% increase in genome recovery in 67% of the samples when using the original V4 pooling strategy compared to the V3 primers. Amplicon drop-offs at primer positions 23 and 90 were observed for all variants and positive controls. When using the optimized protocol, we observed a 60% improvement in genome recovery across all samples and an increase in the average depth in amplicon 23 and 90. Consequently, ≥95% of the genome was recovered in 72% (n = 31) of the samples. However, only 60–70% of the genomes could be recovered in samples that had 0.05) correlation between Ct value and genome recovery. Conclusion: Utilizing the ARTIC V4 primers, while increasing the primer concentrations for amplicons with drop-offs or low average read-depth, greatly improves genome recovery of Alpha, Beta, Delta, Eta and non-VOC/non-VOI SARS-CoV-2 variants

    Transmission networks of SARS-CoV-2 in Coastal Kenya during the first two waves: a retrospective genomic study

    No full text
    Background: Detailed understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) regional transmission networks within sub-Saharan Africa is key for guiding local public health interventions against the pandemic. Methods: Here, we analysed 1139 SARS-CoV-2 genomes from positive samples collected between March 2020 and February 2021 across six counties of Coastal Kenya (Mombasa, Kilifi, Taita Taveta, Kwale, Tana River, and Lamu) to infer virus introductions and local transmission patterns during the first two waves of infections. Virus importations were inferred using ancestral state reconstruction, and virus dispersal between counties was estimated using discrete phylogeographic analysis. Results: During Wave 1, 23 distinct Pango lineages were detected across the six counties, while during Wave 2, 29 lineages were detected; 9 of which occurred in both waves and 4 seemed to be Kenya specific (B.1.530, B.1.549, B.1.596.1, and N.8). Most of the sequenced infections belonged to lineage B.1 (n = 723, 63%), which predominated in both Wave 1 (73%, followed by lineages N.8 [6%] and B.1.1 [6%]) and Wave 2 (56%, followed by lineages B.1.549 [21%] and B.1.530 [5%]). Over the study period, we estimated 280 SARS-CoV-2 virus importations into Coastal Kenya. Mombasa City, a vital tourist and commercial centre for the region, was a major route for virus imports, most of which occurred during Wave 1, when many Coronavirus Disease 2019 (COVID-19) government restrictions were still in force. In Wave 2, inter-county transmission predominated, resulting in the emergence of local transmission chains and diversity. Conclusions: Our analysis supports moving COVID-19 control strategies in the region from a focus on international travel to strategies that will reduce local transmission. Funding: This work was funded by The Wellcome (grant numbers: 220985, 203077/Z/16/Z, 220977/Z/20/Z, and 222574/Z/21/Z) and the National Institute for Health and Care Research (NIHR), project references: 17/63/and 16/136/33 using UK Aid from the UK government to support global health research, The UK Foreign, Commonwealth and Development Office. The views expressed in this publication are those of the author(s) and not necessarily those of the funding agencies

    Genomic epidemiology of SARS-CoV-2 in Seychelles, 2020–2021

    No full text
    Seychelles, an archipelago of 155 islands in the Indian Ocean, had confirmed 24,788 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) by the 31st of December 2021. The first SARS-CoV-2 cases in Seychelles were reported on the 14th of March 2020, but cases remained low until January 2021, when a surge was observed. Here, we investigated the potential drivers of the surge by genomic analysis of 1056 SARS-CoV-2 positive samples collected in Seychelles between 14 March 2020 and 31 December 2021. The Seychelles genomes were classified into 32 Pango lineages, 1042 of which fell within four variants of concern, i.e., Alpha, Beta, Delta and Omicron. Sporadic cases of SARS-CoV-2 detected in Seychelles in 2020 were mainly of lineage B.1 (lineage predominantly observed in Europe) but this lineage was rapidly replaced by Beta variant starting January 2021, and which was also subsequently replaced by the Delta variant in May 2021 that dominated till November 2021 when Omicron cases were identified. Using the ancestral state reconstruction approach, we estimated that at least 78 independent SARS-CoV-2 introduction events occurred in Seychelles during the study period. The majority of viral introductions into Seychelles occurred in 2021, despite substantial COVID-19 restrictions in place during this period. We conclude that the surge of SARS-CoV-2 cases in Seychelles in January 2021 was primarily due to the introduction of more transmissible SARS-CoV-2 variants into the islands

    Sampling adult populations of anopheles mosquitoes

    No full text
    For the control and elimination of malaria, information on the local vector dynamics is essential. This information provides guidance on appropriate and timely deployment of vector control tools and their subsequent success. The data on the dynamics of local mosquito populations can be collected using many different Anopheles sampling methods. Dependent on the objectives, resources, time, and local environment, different traps and methods can be chosen. This chapter describes the sampling of adult populations, focusing on the important preparatory stages and some of the widely used sampling methods. The trapping methods discussed in this chapter are the human landing catch, human-baited net trap, animal landing catch, animal-baited net trap, CDC miniature light trap, Biogents Suna trap, peripheral net collection, pyrethrum collection, exit/entry trap, and resting shelter. For optimal deployment in the field, a step-by-step description of the sampling methods is given.</p
    corecore