640 research outputs found

    Transforming the system of SOEs in South Africa: Towards a mission-oriented state holding company

    Get PDF
    This policy brief explores the potential of a mission-oriented state holding company, which is currently being instituted in South Africa. Moving from the concept of 'system of state-owned enterprises' and its different configurations, the paper illustrates the historical model of Italy's former state holding company IRI in comparison with the state ownership model currently in place in Italy. The brief presents the rationale for a state holding company and its economic opportunities, if properly structured as an entrepreneurial and mission-oriented organisation. Finally, it concludes with the presentation of an organisational and governance model that could inspire the current design process for South Africa's state-holding company

    Strategic missions and policy opportunities for State-owned enterprises

    Get PDF
    This IIPP policy brief looks at the system of State-owned enterprises in Italy, highlighting the policy opportunity to exploit their full potential through coordinated mission-oriented strategies

    Off-equilibrium corrections to energy and conserved charge densities in the relativistic fluid in heavy-ion collisions

    Full text link
    Dissipative processes in relativistic fluids are known to be important in the analyses of the hot QCD matter created in high-energy heavy-ion collisions. In this work, I consider dissipative corrections to energy and conserved charge densities, which are conventionally assumed to be vanishing but could be finite. Causal dissipative hydrodynamics is formulated in the presence of those dissipative currents. The relation between hydrodynamic stability and transport coefficients is discussed. I then study their phenomenological consequences on the observables of heavy-ion collisions in numerical simulations. It is shown that particle spectra and elliptic flow can be visibly modified.Comment: 10 pages, 5 figures; title changed, references added, conclusions unchange

    Photoconductivity and photoluminescence under bias in GaInNAs/GaAs MQW p-i-n structures

    Get PDF
    Abstract The low temperature photoluminescence under bias (PLb) and the photoconductivity (PC) of a p-i-n GaInNAs/GaAs multiple quantum well sample have been investigated. Under optical excitation with photons of energy greater than the GaAs bandgap, PC and PLb results show a number of step-like increases when the sample is reverse biased. The nature of these steps, which depends upon the temperature, exciting wavelength and intensity and the number of quantum wells (QWs) in the device, is explained in terms of thermionic emission and negative charge accumulation due to the low confinement of holes in GaInNAs QWs. At high temperature, thermal escape from the wells becomes much more dominant and the steps smear out.</jats:p

    Experimental investigation and numerical modelling of photocurrent oscillations in lattice matched Ga1−xIn x N y As1−y/GaAs quantum well p-i-n photodiodes

    Get PDF
    Abstract Photocurrent oscillations, observed at low temperatures in lattice-matched Ga1−x In x N y As1−y /GaAs multiple quantum well (MQW) p-i-n samples, are investigated as a function of applied bias and excitation wavelength and are modelled with the aid of semiconductor simulation software. The oscillations appear only at low temperatures and have the highest amplitude when the optical excitation energy is in resonance with the GaInNAs bandgap. They are explained in terms of electron accumulation and the formation of high-field domains in the GaInNAs QWs as a result of the disparity between the photoexcited electron and hole escape rates from the QWs. The application of the external bias results in the motion of the high-field domain towards the anode where the excess charge dissipates from the well adjacent to anode via tunnelling.</jats:p

    Dilute nitride and GaAs n-i-p-i solar cells

    Get PDF
    Abstract We demonstrate for the first time the operation of GaInNAs and GaAs n-i-p-i doping solar cells with ion-implanted selective contacts. Multiple layers of alternate doping are grown by molecular beam epitaxy to form the n-i-p-i structure. After growth, vertical selective contacts are fabricated by Mg and Si ion implantation, followed by rapid thermal annealing treatment and fabrication into circular mesa cells. As means of characterisation, spectral response and illuminated current–voltage (I-V) were measured on the samples. The spectral response suggests that all horizontal layers are able to contribute to the photocurrent. Performance of the devices is discussed with interest in the n-i-p-i structure as a possible design for the GaInP/GaAs/GaInNAs tandem solar cell.</jats:p

    GaInNAs-based Hellish-vertical cavity semiconductor optical amplifier for 1.3 μm operation

    Get PDF
    Hot electron light emission and lasing in semiconductor heterostructure (Hellish) devices are surface emitters the operation of which is based on the longitudinal injection of electrons and holes in the active region. These devices can be designed to be used as vertical cavity surface emitting laser or, as in this study, as a vertical cavity semiconductor optical amplifier (VCSOA). This study investigates the prospects for a Hellish VCSOA based on GaInNAs/GaAs material for operation in the 1.3-μm wavelength range. Hellish VCSOAs have increased functionality, and use undoped distributed Bragg reflectors; and this coupled with direct injection into the active region is expected to yield improvements in the gain and bandwidth. The design of the Hellish VCSOA is based on the transfer matrix method and the optical field distribution within the structure, where the determination of the position of quantum wells is crucial. A full assessment of Hellish VCSOAs has been performed in a device with eleven layers of Ga0.35In0.65N0.02As0.08/GaAs quantum wells (QWs) in the active region. It was characterised through I-V, L-V and by spectral photoluminescence, electroluminescence and electro-photoluminescence as a function of temperature and applied bias. Cavity resonance and gain peak curves have been calculated at different temperatures. Good agreement between experimental and theoretical results has been obtained
    corecore