18 research outputs found

    Retirement and Medical Benefits: Who Has Both?

    Get PDF
    [Excerpt] Employee compensation packages commonly include both wages and benefits. For decades, employee benefits have been used as part of the total compensation package to attract and retain highly qualified workers. Just as workers in various occupations receive different levels of pay, they also receive access to different types and combinations of employee benefits. This article uses March 2012 National Compensation Survey (NCS) data to examine private industry workers’ access to medical benefits, retirement benefits, and combinations of the two benefits, by major occupation group, wage category, part-time and full-time status, union and nonunion status, and establishment size. The study finds notable differences in the patterns of access to medical and retirement benefits—separately, and in combination—among the various worker groups

    The PREDICTS database: a global database of how local terrestrial biodiversity responds to human impacts

    Get PDF
    Biodiversity continues to decline in the face of increasing anthropogenic pressures such as habitat destruction, exploitation, pollution and introduction of alien species. Existing global databases of species’ threat status or population time series are dominated by charismatic species. The collation of datasets with broad taxonomic and biogeographic extents, and that support computation of a range of biodiversity indicators, is necessary to enable better understanding of historical declines and to project – and avert – future declines. We describe and assess a new database of more than 1.6 million samples from 78 countries representing over 28,000 species, collated from existing spatial comparisons of local-scale biodiversity exposed to different intensities and types of anthropogenic pressures, from terrestrial sites around the world. The database contains measurements taken in 208 (of 814) ecoregions, 13 (of 14) biomes, 25 (of 35) biodiversity hotspots and 16 (of 17) megadiverse countries. The database contains more than 1% of the total number of all species described, and more than 1% of the described species within many taxonomic groups – including flowering plants, gymnosperms, birds, mammals, reptiles, amphibians, beetles, lepidopterans and hymenopterans. The dataset, which is still being added to, is therefore already considerably larger and more representative than those used by previous quantitative models of biodiversity trends and responses. The database is being assembled as part of the PREDICTS project (Projecting Responses of Ecological Diversity In Changing Terrestrial Systems – www.predicts.org.uk). We make site-level summary data available alongside this article. The full database will be publicly available in 2015

    Patient and stakeholder engagement learnings: PREP-IT as a case study

    Get PDF

    Correction to: Cluster identification, selection, and description in Cluster randomized crossover trials: the PREP-IT trials

    Get PDF
    An amendment to this paper has been published and can be accessed via the original article

    Global patterns in seed size

    No full text
    Aim: To provide the first global quantification of the slope and shape of the latitudinal gradient in seed mass, and to determine whether global patterns in seed mass are best explained by growth form, vegetation type, seed dispersal syndrome, or net primary productivity (NPP). Location: Global. Methods: We collected seed mass data for 11,481 species × site combinations from around the world. We used regression to describe the latitudinal gradient in seed mass, then applied general linear models to quantify the relative explanatory power of each of the variables hypothesized to underlie the latitudinal gradient in seed size. Results: There is a 320-fold decline in geometric mean seed mass between the equator and 60°. This decline is not linear. At the edge of the tropics, there is a sudden 7-fold drop in mean seed mass. The strongest correlates of the latitudinal gradient in seed mass are plant growth form, and vegetation type, followed by dispersal syndrome and NPP. A model including growth form, vegetation type, dispersal syndrome and NPP explains 51% of the variation in seed mass. Latitude explains just 0.2% of the residual variation from this model. Main conclusions: This is the first demonstration of a major decrease in seed size at the edge of the tropics. This drop in seed mass is most closely correlated with changes in plant growth form and vegetation type. This suggests that the drop in seed mass might be part of a sudden change in plant strategy at the edge of the tropics

    Global patterns in seed size

    No full text
    Aim: To provide the first global quantification of the slope and shape of the latitudinal gradient in seed mass, and to determine whether global patterns in seed mass are best explained by growth form, vegetation type, seed dispersal syndrome, or net primary productivity (NPP). Location Global. Methods: We collected seed mass data for 11,481 species × site combinations from around the world. We used regression to describe the latitudinal gradient in seed mass, then applied general linear models to quantify the relative explanatory power of each of the variables hypothesized to underlie the latitudinal gradient in seed size. Results: There is a 320-fold decline in geometric mean seed mass between the equator and 60°. This decline is not linear. At the edge of the tropics, there is a sudden 7-fold drop in mean seed mass. The strongest correlates of the latitudinal gradient in seed mass are plant growth form, and vegetation type, followed by dispersal syndrome and NPP. A model including growth form, vegetation type, dispersal syndrome and NPP explains 51% of the variation in seed mass. Latitude explains just 0.2% of the residual variation from this model. Main conclusions: This is the first demonstration of a major decrease in seed size at the edge of the tropics. This drop in seed mass is most closely correlated with changes in plant growth form and vegetation type. This suggests that the drop in seed mass might be part of a sudden change in plant strategy at the edge of the tropics.8 page(s

    Algal chloroplast produced camelid VHH antitoxins are capable of neutralizing botulinum neurotoxin

    No full text
    We have produced three antitoxins consisting of the variable domains of camelid heavy chain-only antibodies (VH H) by expressing the genes in the chloroplast of green algae. These antitoxins accumulate as soluble proteins capable of binding and neutralizing botulinum neurotoxin. Furthermore, they accumulate at up to 5% total soluble protein, sufficient expression to easily produce these antitoxins at scale from algae. The genes for the three different antitoxins were transformed into Chlamydomonas reinhardtii chloroplasts and their products purified from algae lysates and assayed for in vitro biological activity using toxin protection assays. The produced antibody domains bind to botulinum neurotoxin serotype A (BoNT/A) with similar affinities as camelid antibodies produced in Escherichia coli, and they are similarly able to protect primary rat neurons from intoxication by BoNT/A. Furthermore, the camelid antibodies were produced in algae without the use of solubilization tags commonly employed in E. coli. These camelid antibody domains are potent antigen-binding proteins and the heterodimer fusion protein containing two VH H domains was capable of neutralizing BoNT/A at near equimolar concentrations with the toxin. Intact antibody domains were detected in the gastrointestinal (GI) tract of mice treated orally with antitoxin-producing microalgae. These findings support the use of orally delivered antitoxins produced in green algae as a novel treatment for botulism
    corecore