12 research outputs found

    Critical role for iron accumulation in the pathogenesis of fibrotic lung disease

    Get PDF
    Increased iron levels and dysregulated iron homeostasis, or both, occur in several lung diseases. Here, the effects of iron accumulation on the pathogenesis of pulmonary fibrosis and associated lung function decline was investigated using a combination of murine models of iron overload and bleomycin-induced pulmonary fibrosis, primary human lung fibroblasts treated with iron, and histological samples from patients with or without idiopathic pulmonary fibrosis (IPF). Iron levels are significantly increased in iron overloaded transferrin receptor 2 (Tfr2) mutant mice and homeostatic iron regulator (Hfe) gene–deficient mice and this is associated with increases in airway fibrosis and reduced lung function. Furthermore, fibrosis and lung function decline are associated with pulmonary iron accumulation in bleomycin-induced pulmonary fibrosis. In addition, we show that iron accumulation is increased in lung sections from patients with IPF and that human lung fibroblasts show greater proliferation and cytokine and extracellular matrix responses when exposed to increased iron levels. Significantly, we show that intranasal treatment with the iron chelator, deferoxamine (DFO), from the time when pulmonary iron levels accumulate, prevents airway fibrosis and decline in lung function in experimental pulmonary fibrosis. Pulmonary fibrosis is associated with an increase in Tfr1+ macrophages that display altered phenotype in disease, and DFO treatment modified the abundance of these cells. These experimental and clinical data demonstrate that increased accumulation of pulmonary iron plays a key role in the pathogenesis of pulmonary fibrosis and lung function decline. Furthermore, these data highlight the potential for the therapeutic targeting of increased pulmonary iron in the treatment of fibrotic lung diseases such as IPF

    Characterization and inhibition of inflammasome responses in severe and non-severe asthma

    No full text
    Abstract Background Increased airway NLRP3 inflammasome-mediated IL-1β responses may underpin severe neutrophilic asthma. However, whether increased inflammasome activation is unique to severe asthma, is a common feature of immune cells in all inflammatory types of severe asthma, and whether inflammasome activation can be therapeutically targeted in patients, remains unknown. Objective To investigate the activation and inhibition of inflammasome-mediated IL-1β responses in immune cells from patients with asthma. Methods Peripheral blood mononuclear cells (PBMCs) were isolated from patients with non-severe (n = 59) and severe (n = 36 stable, n = 17 exacerbating) asthma and healthy subjects (n = 39). PBMCs were stimulated with nigericin or lipopolysaccharide (LPS) alone, or in combination (LPS + nigericin), with or without the NLRP3 inhibitor MCC950, and the effects on IL-1β release were assessed. Results PBMCs from patients with non-severe or severe asthma produced more IL-1β in response to nigericin than those from healthy subjects. PBMCs from patients with severe asthma released more IL-1β in response to LPS + nigericin than those from non-severe asthma. Inflammasome-induced IL-1β release from PBMCs from patients with severe asthma was not increased during exacerbation compared to when stable. Inflammasome-induced IL-1β release was not different between male and female, or obese and non-obese patients and correlated with eosinophil and neutrophil numbers in the airways. MCC950 effectively suppressed LPS-, nigericin-, and LPS + nigericin-induced IL-1β release from PBMCs from all groups. Conclusion An increased ability for inflammasome priming and/or activation is a common feature of systemic immune cells in both severe and non-severe asthma, highlighting inflammasome inhibition as a universal therapy for different subtypes of disease

    Anti-viral responses of tissue-resident CD49a+ lung NK cells are dysregulated in COPD

    No full text
    Rationale: Tissue-resident natural killer cells have been identified in numerous organs, but little is known about their functional contribution to respiratory immunity, in particular during chronic lung diseases such as COPD. Objectives: To investigate the phenotype and antiviral responses of trNK cells in murine cigarette smoke-induced experimental COPD and in human lung parenchyma from COPD donors.Methods: Mice were exposed to cigarette smoke for 10 weeks to induce COPD-like lung disease. Lung tissue resident NK cell phenotypes and function were analysed by flow cytometry in both murine and human disease with and without challenge with influenza A virus. Measurements and Main Results: In the mouse lung CD49a+CD49b+EOMES+ and CD49a+CD49b-EOMESlo NK cell populations had a distinct phenotype compared with CD49a- circulating NK cells. CD49a+ NK cells were more extensively altered earlier in disease onset than circulating NK cells and increased proportions of CD49a+ NK cells correlated with worsening disease in both murine and human COPD. Furthermore, the presence of lung disease delayed both circulating and tissue-resident NK cell functional responses to influenza infection. CD49a+ NK cells markedly increased their NKG2D, CD103 and CD69 expression in experimental COPD following influenza infection, and human CD49a+ NK cells were hyperactive to ex vivo influenza infection in COPD donors. Conclusions: Collectively, these results demonstrate that tissue-resident NK cell function is altered in cigarette smoke-induced disease and suggests that smoke exposure may aberrantly prime tissue-resident NK cell responsiveness to viral infection. This may contribute to excess inflammation during viral exacerbations of COPD.<br/

    Defining the distinct, intrinsic properties of the novel type I interferon, IFNϵ

    Get PDF
    The type I interferons (IFNs) are a family of cytokines with diverse biological activities, including antiviral, antiproliferative, and immunoregulatory functions. The discovery of the hormonally regulated, constitutively expressed IFNϵ has suggested a function for IFNs in reproductive tract homeostasis and protection from infections, but its intrinsic activities are untested. We report here the expression, purification, and functional characterization of murine IFNϵ (mIFNϵ). Recombinant mIFNϵ (rmIFNϵ) exhibited an α-helical fold characteristic of type I IFNs and bound to IFNα/β receptor 1 (IFNAR1) and IFNAR2, but, unusually, it had a preference for IFNAR1. Nevertheless, rmIFNϵ induced typical type I IFN signaling activity, including STAT1 phosphorylation and activation of canonical type I IFN signaling reporters, demonstrating that it uses the JAK–STAT signaling pathway. We also found that rmIFNϵ induces the activation of T, B, and NK cells and exhibits antiviral, antiproliferative, and antibacterial activities typical of type I IFNs, albeit with 100–1000-fold reduced potency compared with rmIFNα1 and rmIFNβ. Surprisingly, although the type I IFNs generally do not display cross-species activities, rmIFNϵ exhibited high antiviral activity on human cells, suppressing HIV replication and inducing the expression of known HIV restriction factors in human lymphocytes. Our findings define the intrinsic properties of murine IFNϵ, indicating that it distinctly interacts with IFNAR and elicits pathogen-suppressing activity with a potency enabling host defense but with limited toxicity, appropriate for a protein expressed constitutively in a sensitive mucosal site, such as the reproductive tract.Full Tex

    Interferon-epsilon is a novel regulator of NK cell responses in the uterus

    No full text
    Abstract The uterus is a unique mucosal site where immune responses are balanced to be permissive of a fetus, yet protective against infections. Regulation of natural killer (NK) cell responses in the uterus during infection is critical, yet no studies have identified uterine-specific factors that control NK cell responses in this immune-privileged site. We show that the constitutive expression of IFNε in the uterus plays a crucial role in promoting the accumulation, activation, and IFNγ production of NK cells in uterine tissue during Chlamydia infection. Uterine epithelial IFNε primes NK cell responses indirectly by increasing IL-15 production by local immune cells and directly by promoting the accumulation of a pre-pro-like NK cell progenitor population and activation of NK cells in the uterus. These findings demonstrate the unique features of this uterine-specific type I IFN and the mechanisms that underpin its major role in orchestrating innate immune cell protection against uterine infection
    corecore