8 research outputs found

    International Society of Sports Nutrition Position Stand: Probiotics.

    Get PDF
    Position statement: The International Society of Sports Nutrition (ISSN) provides an objective and critical review of the mechanisms and use of probiotic supplementation to optimize the health, performance, and recovery of athletes. Based on the current available literature, the conclusions of the ISSN are as follows: 1)Probiotics are live microorganisms that, when administered in adequate amounts, confer a health benefit on the host (FAO/WHO).2)Probiotic administration has been linked to a multitude of health benefits, with gut and immune health being the most researched applications.3)Despite the existence of shared, core mechanisms for probiotic function, health benefits of probiotics are strain- and dose-dependent.4)Athletes have varying gut microbiota compositions that appear to reflect the activity level of the host in comparison to sedentary people, with the differences linked primarily to the volume of exercise and amount of protein consumption. Whether differences in gut microbiota composition affect probiotic efficacy is unknown.5)The main function of the gut is to digest food and absorb nutrients. In athletic populations, certain probiotics strains can increase absorption of key nutrients such as amino acids from protein, and affect the pharmacology and physiological properties of multiple food components.6)Immune depression in athletes worsens with excessive training load, psychological stress, disturbed sleep, and environmental extremes, all of which can contribute to an increased risk of respiratory tract infections. In certain situations, including exposure to crowds, foreign travel and poor hygiene at home, and training or competition venues, athletes' exposure to pathogens may be elevated leading to increased rates of infections. Approximately 70% of the immune system is located in the gut and probiotic supplementation has been shown to promote a healthy immune response. In an athletic population, specific probiotic strains can reduce the number of episodes, severity and duration of upper respiratory tract infections.7)Intense, prolonged exercise, especially in the heat, has been shown to increase gut permeability which potentially can result in systemic toxemia. Specific probiotic strains can improve the integrity of the gut-barrier function in athletes.8)Administration of selected anti-inflammatory probiotic strains have been linked to improved recovery from muscle-damaging exercise.9)The minimal effective dose and method of administration (potency per serving, single vs. split dose, delivery form) of a specific probiotic strain depends on validation studies for this particular strain. Products that contain probiotics must include the genus, species, and strain of each live microorganism on its label as well as the total estimated quantity of each probiotic strain at the end of the product's shelf life, as measured by colony forming units (CFU) or live cells.10)Preclinical and early human research has shown potential probiotic benefits relevant to an athletic population that include improved body composition and lean body mass, normalizing age-related declines in testosterone levels, reductions in cortisol levels indicating improved responses to a physical or mental stressor, reduction of exercise-induced lactate, and increased neurotransmitter synthesis, cognition and mood. However, these potential benefits require validation in more rigorous human studies and in an athletic population

    Influence of cholecalciferol (Vitamin D3) on the course of experimental systemic lupus erythematosus in F1 (NZBxW) mice

    No full text
    The course of systemic lupus erythematosus (SLE), an autoimmune disease, is markedly affected by hormones such as estrogen and prolactin. It is well known that heavy exposure to sunlight has deleterious effects on SLE, triggering episodes of the disease. Classical explanations for this occurrence suggest that UV radiation damages DNA, which becomes immunogenic, or induces exposure of the Ro antigen in keratinocytes. In recent years, it has been shown that vitamin D3 has important effects on the immune system. Thus, we proposed an alternative hypothesis, suggesting that UV radiation, by promoting vitamin D3 synthesis, could be a factor aggravating the course of SLE after exposure to sunlight. To test this hypothesis, we injected F1(NZBxW) mice, which are prone to developing SLE, with vitamin D3, and we demonstrated a worsening of the histopathological findings in the kidney. (C) 2000 Wiley-Liss, Inc

    Regular Practice of Physical Activity Improves Cholesterol Transfers to High-Density Lipoprotein (HDL) and Other HDL Metabolic Parameters in Older Adults

    No full text
    The effects of regular physical activity on two important anti-atherosclerosis functions of high-density lipoprotein (HDL), namely its capacity to receive both forms of cholesterol and its anti-oxidant function, were investigated in this study comparing older adults with young individuals. One-hundred and eight healthy adult individuals were enrolled and separated into the following groups: active older (60–80 yrs, n = 24); inactive older (60–79 yrs, n = 21); active young (20–34 yrs, n = 39); and inactive young (20–35 yrs, n = 24). All performed cardiopulmonary tests. Blood samples were collected in order to assess the following measures: lipid profile, HDL anti-oxidant capacity, paraoxonase-1 activity, HDL subfractions, and lipid transfer to HDL. Comparing active older and active young groups with inactive older and inactive young groups, respectively, the active groups presented higher HDL-C levels (p p p p p p 2peak than the inactive groups; VO2peak was higher in the two younger than in the two older groups (p 2peak

    Vitamin D3 Induces Ido+ Tolerogenic Dcs And Enhances Treg, Reducing The Severity Of Eae.

    No full text
    A growing body of evidence supports the hypothesis that vitamin D is an important environmental factor in the etiology of T-cell-mediated autoimmune diseases such as multiple sclerosis (MS). The purpose of this study was exploring the mechanisms underlying the beneficial effect of vitamin D3 in encephalomyelitis (EAE). We treated monophasic experimental autoimmune EAE, induced in Lewis rat, with vitamin D3 and adoptively transfer tolerogenic bone marrow-derived DCs generated in the presence of vitamin D3. This study provides evidence that the in vivo administration of vitamin D3, as well as the adoptive transfer of vitamin D3 -induced IDO(+) immature/tolerogenic dendritic cells, leads to a significant increase in the percentage of CD4(+) CD25(+) Foxp3(+) regulatory T cells in the lymph nodes in a rat model of MS, experimental autoimmune EAE. Concomitant with the increase in this cell population, there is a significant decrease in the number of autoreactive T cells in the central nervous system. Bone marrow-derived DCs cultivated in the presence of vitamin D3 present a tolerogenic profile with high IL-10, TNFα, and IDO expression and decreased MHC-II and CD80 expression. The adoptive transfer of IDO (+) DCs induces a significant increase in the percentage of CD4(+) CD25(+) Foxp3(+) T cells in the lymph nodes, comparable with vitamin D3 treatment. These mechanisms contribute actively to the generation of a microenvironment in the lymph nodes that suppresses the activation of encephalitogenic T cells, resulting in the downregulation of the inflammatory response in the central nervous system.19269-7
    corecore