973 research outputs found
Combination of metabolomic and proteomic analysis revealed different features among Lactobacillus delbrueckii subspecies bulgaricus and lactis strains while in vivo testing in the model organism Caenorhabditis elegans highlighted probiotic properties
Lactobacillus delbrueckii represents a technologically relevant member of lactic acid bacteria, since the two subspecies bulgaricus and lactis are widely associated with fermented dairy products. In the present work, we report the characterization of two commercial strains belonging to L. delbrueckii subspecies bulgaricus, lactis and a novel strain previously isolated from a traditional fermented fresh cheese. A phenomic approach was performed by combining metabolomic and proteomic analysis of the three strains, which were subsequently supplemented as food source to the model organism Caenorhabditis elegans, with the final aim to evaluate their possible probiotic effects. Restriction analysis of 16S ribosomal DNA revealed that the novel foodborne strain belonged to L. delbrueckii subspecies lactis. Proteomic and metabolomic approaches showed differences in folate, aminoacid and sugar metabolic pathways among the three strains. Moreover, evaluation of C. elegans lifespan, larval development, brood size, and bacterial colonization capacity demonstrated that L. delbrueckii subsp. bulgaricus diet exerted beneficial effects on nematodes. On the other hand, both L. delbrueckii subsp. lactis strains affected lifespan and larval development. We have characterized three strains belonging to L. delbrueckii subspecies bulgaricus and lactis highlighting their divergent origin. In particular, the two closely related isolates L. delbrueckii subspecies lactis display different galactose metabolic capabilities. Moreover, the L. delbrueckii subspecies bulgaricus strain demonstrated potential probiotic features. Combination of omic platforms coupled with in vivo screening in the simple model organism C. elegans is a powerful tool to characterize industrially relevant bacterial isolates
Macrophages may promote cancer growth via a GM-CSF/HB-EGF paracrine loop that is enhanced by CXCL12
<p>Abstract</p> <p>Background</p> <p>Increased numbers of tumour-associated macrophages correlate with shortened survival in some cancers. The molecular bases of this correlation are not thoroughly understood. Events triggered by CXCL12 may play a part, as CXCL12 drives the migration of both CXCR4-positive cancer cells and macrophages and may promote a molecular crosstalk between them.</p> <p>Results</p> <p>Samples of HER1-positive colon cancer metastases in liver, a tissue with high expression of CXCL12, were analysed by immunohistochemistry. In all of the patient biopsies, CD68-positive tumour-associated macrophages presented a mixed CXCL10 (M1)/CD163 (M2) pattern, expressed CXCR4, GM-CSF and HB-EGF, and some stained positive for CXCL12. Cancer cells stained positive for CXCR4, CXCL12, HER1, HER4 and GM-CSF. Regulatory interactions among these proteins were validated <it>via </it>experiments <it>in vitro </it>involving crosstalk between human mononuclear phagocytes and the cell lines DLD-1 (human colon adenocarcinoma) and HeLa (human cervical carcinoma), which express the above-mentioned ligand/receptor repertoire. CXCL12 induced mononuclear phagocytes to release HB-EGF, which activated HER1 and triggered anti-apoptotic and proliferative signals in cancer cells. The cancer cells then proliferated and released GM-CSF, which in turn activated mononuclear phagocytes and induced them to release more HB-EGF. Blockade of GM-CSF with neutralising antibodies or siRNA suppressed this loop.</p> <p>Conclusions</p> <p>CXCL12-driven stimulation of cancer cells and macrophages may elicit and reinforce a GM-CSF/HB-EGF paracrine loop, whereby macrophages contribute to cancer survival and expansion. The involvement of mixed M1/M2 GM-CSF-stimulated macrophages in a tumour-promoting loop may challenge the paradigm of tumour-favouring macrophages as polarized M2 mononuclear phagocytes.</p
A novel approach for the purification and proteomic analysis of pathogenic immunglobulin free light chains from serum
An excess of circulating monoclonal free immunoglobulin light chains (FLC) is common in plasma cell disorders. A subset of FLC, as amyloidogenic ones, possess intrinsic pathogenicity. Because of their complex purification, little is known on the biochemical features of serum FLC, possibly related to their pathogenic spectrum. We developed an immunopurification approach to isolate serum FLC from patients with monoclonal gammopathies, followed by proteomic characterization. Serum monoclonal FLC were detected and quantified by immunofixation and immunonephelometry. Immunoprecipitation was performed by serum incubation with agarose beads covalently linked to polyclonal anti-Îș or λ FLC antibodies. Isolated FLC were analyzed by SDS-PAGE, 2D-PAGE, immunoblotting, mass spectrometry (MS). Serum FLC were immunoprecipitated from 15 patients with ALλ amyloidosis (serum λ FLC range: 98-2350mg/L), 5 with ALÎș amyloidosis and 1 with Îș light chain (LC) myeloma (Îș FLC range: 266-2660mg/L), and 3 controls. Monoclonal FLC were the prevalent eluted species in patients. On 2D-PAGE, both λ and Îș FLC originated discrete spots with multiple pI isoforms. The nature of eluted FLC and coincidence with the LC sequence from the bone marrow clone was confirmed by MS, which also detected post-translational modifications, including truncation, tryptophan oxidation, cysteinylation, peptide dimerization. Serum FLC were purified in soluble form and adequate amounts for proteomics, which allowed studying primary sequence and detecting post-translational modifications. This method is a novel instrument for studying the molecular bases of FLC pathogenicity, allowing for the first time the punctual biochemical description of the circulating forms
CXCL12 and [N33A]CXCL12 in 5637 and HeLa Cells: Regulating HER1 Phosphorylation via Calmodulin/Calcineurin
In the human neoplastic cell lines 5637 and HeLa, recombinant CXCL12 elicited, as expected, downstream signals via both G-protein-dependent and \u3b2-arrestin-dependent pathways responsible for inducing a rapid and a late wave, respectively, of ERK1/2 phosphorylation. In contrast, the structural variant [N33A]CXCL12 triggered no \u3b2-arrestin-dependent phosphorylation of ERK1/2, and signaled via G protein-dependent pathways alone. Both CXCL12 and [N33A]CXCL12, however, generated signals that transinhibited HER1 phosphorylation via intracellular pathways. 1) Prestimulation of CXCR4/HER1-positive 5637 or HeLa cells with CXCL12 modified the HB-EGF-dependent activation of HER1 by delaying the peak phosphorylation of tyrosine 1068 or 1173. 2) Prestimulation with the synthetic variant [N33A]CXCL12, while preserving CXCR4-related chemotaxis and CXCR4 internalization, abolished HER1 phosphorylation. 3) In cells knockdown of \u3b2-arrestin 2, CXCL12 induced a full inhibition of HER1 like [N33A]CXCL12 in non-silenced cells. 4) HER1 phosphorylation was restored as usual by inhibiting PCK, calmodulin or calcineurin, whereas the inhibition of CaMKII had no discernable effect. We conclude that both recombinant CXCL12 and its structural variant [N33A]CXCL12 may transinhibit HER1 via G-proteins/calmodulin/calcineurin, but [N33A]CXCL12 does not activate \u3b2-arrestin-dependent ERK1/2 phosphorylation and retains a stronger inhibitory effect. Therefore, we demonstrated that CXCL12 may influence the magnitude and the persistence of signaling downstream of HER1 in turn involved in the proliferative potential of numerous epithelial cancer. In addition, we recognized that [N33A]CXCL12 activates preferentially G-protein-dependent pathways and is an inhibitor of HER1
Galectin-3: An early predictive biomarker of modulation of airway remodeling in patients with severe asthma treated with omalizumab for 36 months
Background: Bronchial asthma is a heterogeneous disease characterized by three cardinal features: chronic inflammation, variable airflow obstruction, and airway hyperresponsiveness. Asthma has traditionally been defined using nonspecific clinical and physiologic variables that encompass multiple phenotypes and are treated with nonspecific anti-inflammatory therapies. Based on the modulation of airway remodeling after 12 months of anti-immunoglobulin E (IgE) treatment, we identified two phenotypes (omalizumab responder, OR; and non-omalizumab responder, NOR) and performed morphometric analysis of bronchial biopsy specimens. We also found that these two phenotypes were correlated with the presence/absence of galectin-3 (Gal-3) at baseline (i.e., before treatment). The aims of the present study were to investigate the histological and molecular effects of long-term treatment (36 months) with anti-IgE and to analyze the behavior of OR and NOR patients. Methods: All patients were treated with the monoclonal antibody anti-IgE omalizumab for 36 months. The bronchial biopsy specimens were evaluated using morphometric, eosinophilic, and proteomic analysis (MudPIT). New data were compared with previous data, and unsupervised cluster analysis of protein profiles was performed. Results: After 36 months of treatment with omalizumab, reduction of reticular basement membrane (RBM) thickness was confirmed in OR patients (Gal-3-positive at baseline); similarly, the protein profiles (over 500 proteins identified) revealed that, in the OR group, levels of proteins specifically related to fibrosis and inflammation (e.g., smooth muscle and extracellular matrix proteins (including periostin), Gal-3, and keratins decreased by between 5- and 50-fold. Eosinophil levels were consistent with molecular data and decreased by about tenfold less in ORs and increased by twofold to tenfold more in NORs. This tendency was confirmed (p < 0.05) based on both fold change and DAVE algorithms, thus indicating a clear response to anti-IgE treatment in Gal-3-positive patients. Conclusions: Our results showed that omalizumab can be considered a disease-modifying treatment in OR. The proteomic signatures confirmed the presence of Gal-3 at baseline to be a biomarker of long-term reduction in bronchial RBM thickness, eosinophilic inflammation, and muscular and fibrotic components in omalizumab-treated patients with severe asthma. Our findings suggest a possible relationship between Gal-3 positivity and improved pulmonary function
REGIONAL MAPPING OF MYOCARDIAL HIBERNATION PHENOTYPE IN IDIOPATHIC END-STAGE DILATED CARDIOMYOPATHY
Myocardial hibernation (MH) is a well-known feature of human ischaemic cardiomyopathy (ICM), whereas its presence in human idiopathic dilated cardiomyopathy (DCM) is still controversial. We investigated the histological and molecular features of MH in left ventricle (LV) regions of failing DCM or ICM hearts. We examined failing hearts from DCM (n = 11; 41.9 ± 5.45 years; left ventricle-ejection fraction (LV-EF), 18 ± 3.16%) and ICM patients (n = 12; 58.08 ± 1.7 years; LVEF, 21.5 ± 6.08%) undergoing cardiac transplantation, and normal donor hearts (N, n = 8). LV inter-ventricular septum (IVS) and antero-lateral free wall (FW) were transmurally (i.e. sub-epicardial, mesocardial and sub-endocardial layers) analysed. LV glycogen content was shown to be increased in both DCM and ICM as compared with N hearts (P < 0.001), with a U-shaped transmural distribution (lower values in mesocardium). Capillary density was homogenously reduced in both DCM and ICM as compared with N (P < 0.05 versus N), with a lower decrease independent of the extent of fibrosis in sub-endocardial and sub-epicardial layers of DCM as compared with ICM. HIF1-α and nestin, recognized ischaemic molecular hallmarks, were similarly expressed in DCM-LV and ICM-LV myocardium. The proteomic profile was overlapping by ~50% in DCM and ICM groups. Morphological and molecular features of MH were detected in end-stage ICM as well as in end-stage DCM LV, despite epicardial coronary artery patency and lower fibrosis in DCM hearts. Unravelling the presence of MH in the absence of coronary stenosis may be helpful to design a novel approach in the clinical management of DCM
The Protein Network in Subcutaneous Fat Biopsies from Patients with AL Amyloidosis: More Than Diagnosis?
AL amyloidosis is caused by the misfolding of immunoglobulin light chains leading to an impaired function of tissues and organs in which they accumulate. Due to the paucity of -omics profiles from undissected samples, few studies have addressed amyloid-related damage system wide. To fill this gap, we evaluated proteome changes in the abdominal subcutaneous adipose tissue of patients affected by the AL isotypes Îș and λ. Through our retrospective analysis based on graph theory, we have herein deduced new insights representing a step forward from the pioneering proteomic investigations previously published by our group. ECM/cytoskeleton, oxidative stress and proteostasis were confirmed as leading processes. In this scenario, some proteins, including glutathione peroxidase 1 (GPX1), tubulins and the TRiC complex, were classified as biologically and topologically relevant. These and other results overlap with those already reported for other amyloidoses, supporting the hypothesis that amyloidogenic proteins could induce similar mechanisms independently of the main fibril precursor and of the target tissues/organs. Of course, further studies based on larger patient cohorts and different tissues/organs will be essential, which would be a key point that would allow for a more robust selection of the main molecular players and a more accurate correlation with clinical aspects
- âŠ