1,083 research outputs found

    Surface reactivity of amphibole asbestos. A comparison between crocidolite and tremolite

    Get PDF
    Among asbestos minerals, fibrous riebeckite (crocidolite) and tremolite share the amphibole structure but largely differ in terms of their iron content and oxidation state. In asbestos toxicology, iron-generated free radicals are largely held as one of the causes of asbestos malignant effect. With the aim of clarifying i) the relationship between Fe occurrence and asbestos surface reactivity, and ii) how free-radical generation is modulated by surface modifications of the minerals, UICC crocidolite and fibrous tremolite from Maryland were leached from 1 day to 1 month in an oxidative medium buffered at pH 7.4 to induce redox alterations and surface rearrangements that may occur in body fluids. Structural and chemical modifications and free radical generation were monitored by HR-TEM/EDS and spin trapping/EPR spectroscopy, respectively. Free radical yield resulted to be dependent on few specific Fe2+ and Fe3+ surface sites rather than total Fe content. The evolution of reactivity with time highlighted that low-coordinated Fe ions primarily contribute to the overall reactivity of the fibre. Current findings contribute to explain the causes of the severe asbestosinduced oxidative stress at molecular level also for iron-poor amphiboles, and demonstrate that asbestos have a sustained surface radical activity even when highly altered by oxidative leaching

    Therapeutic potential of the phosphino Cu(I) complex (HydroCuP) in the treatment of solid tumors

    Get PDF
    [Cu(thp)4][PF6] (HydroCuP) is a phosphino copper(I) complex highly soluble and stable in physiological media that has been developed as a possible viable alternative to platinum-based drugs for anticancer therapy. HydroCuP potently inhibited the growth of human cancer cells derived from solid tumors by inducing endoplasmatic reticulum (ER) stress thus leading to cell death through paraptosis with a preferential efficacy against cancer rather than non-cancer cells. Aim of the present study was to assess the therapeutic potential of HydroCuP in vivo, in syngenic and xenograft murine models of solid tumors by triggering the Unfolded Protein Response (UPR) pathway. With respect to platinum drugs, HydroCuP induced a markedly higher reduction of tumor growth associated with minimal animal toxicity. In human colorectal cancer xenografts, chemotherapy with HydroCuP was extremely effective in both oxaliplatin-sensitive and resistant models. The favorable in vivo tolerability of HydroCuP was also correlated to an encouraging biodistribution profile. Additionally, no signs of drug-related neurotoxicity and nephrotoxicity were observed. Altogether, these results demonstrate that HydroCuP appears worth of further investigation to evaluate its therapeutic activity towards a broad spectrum of solid malignancies

    I am going to make the most out of it! Italian university Credit Mobility Students' social representations of alcohol use during study abroad experiences

    Get PDF
    The aim was to explore shared representations of alcohol use in students who were to travel abroad to study. Focus group data from Italian students (N = 69) were collected. Analyses used Grounded Theory Methodology and were informed by the four key components of Social Representation Theory (cognition, emotion, attitude and behavioural intentions). The study abroad experience was described as one that would involve an increase in alcohol consumption compared to pre-departure levels. Reasons given included greater social and leisure opportunities involving alcohol, reduced social control and features of the host country environment. Opportunities to intervene and address risky alcohol use in this group are discussed

    Antioxidant Efficiency of Platynereis spp. (Annelida, Nereididae) under Different pH Conditions at a Vent's System

    Get PDF
    Marine organisms are exposed to a pH decrease and to alteration of carbonate chemistry due to ocean acidification (OA) that can represent a source of oxidative stress which can significantly affect their antioxidant defence systems efficiency. The polychaetes Platynereis dumerilii and P. massiliensis (Nereididae) are key species of the benthic community to investigate the effect of OA due to their physiological and ecological characteristics that enable them to persist even in naturally acidified CO2 vent systems. Previous studies have documented the ability of these species to adapt to OA after short- and long-term translocation experiments, but no one has ever evaluated the basal antioxidant system efficiency comparing populations permanently living in habitat characterized by different pH conditions (acidified vs. control). Here, individuals of both Platynereis species, sampled from a natural CO2 vent system and from a nonventing "control" site in three different periods (April 2016, October 2016, and February 2017), were compared highlighting signals which suggested the ability of both species to acclimatize to high pCO2–low pH with slight seasonal variations of their antioxidant efficiency and the absence of disturbances of the oxidative status of Platynereis spp. tissues

    Surface reactivity of amphibole asbestos: A comparison between two tremolite samples with different surface area

    Get PDF
    Surface reactivity of a fibrous tremolite sample from Castelluccio Superiore (Italy) was investigated by means of free radical generation following incubation in H2O2solution buffered at pH 7.4, for several time points, ranging from 1 day to 1 month. Results obtained were compared with those of another fibrous tremolite sample (from Maryland, USA), with much smaller surface area. Structural, morphological, and chemical alterations induced on tremolite by incubation were investigated by HR-TEM/EDS. The generation of HO•and COO-•radicals following reaction of tremolite with H2O2or formate ion was investigated by spin trapping/EPR spectroscopy. The dissolution process and surface modification were slower for the Maryland sample, with lowest surface area. Surface modification indicated the occurrence of either low- or high-coordinated Fe centres on the surface, as well as the evolution of their nuclearity. In turn, iron centres determine the reactivity of the fibre surface and the yield of HO•and COO-•radical species. The evolution of radical reactivity over time was proved to be largely dependent on surface area, with the highest radical yield occurring for low-area tremolite incubated over long times. The experimental results obtained in this study as well as the comparison with previous studies further confirm that surface reactivity of mineral fibres and inorganic particles is not dependent on Fetotcontent per se, but is likely due to surface properties and occurrence of specific iron sites

    Chemical reactivity of thermal treated naturally occurring amphibole asbestos

    Get PDF
    Non-occupational (environmental) exposure to naturally occurring asbestos (NOA) represents a potentially important source of risk for human health in several parts of the world. Chemical reactivity of fibres surface is one of the most relevant physical-chemical property to asbestos toxicity and is commonly associateci to the presence of Fe at the surface, and in particular to its coordination and oxidation state. However, no detailed information is still available about dependence of chemical reactivity on surface iron topochemistry, which is the basis for defining structure-activity relationships. In this work the chemical reactivity of two amphibole asbestos samples, UICC crocidolite from Koegas Mine, Northern Cape (South Africa) and fibrous tremolite from Montgomery County, Maryland (USA), was investigateci after sample heating up to 1200 °c. Ex-situ X-ray powder diffraction (XRPS and the Rietveld method), scanning (SEM) and transmission (TEM) electron microscopy were used for characterizing the minerai fibres before and after the thermal treatment. In addition, thermal stability of the of the amphibole asbestos was analysed in-situ by TG/DSC. Two conventional target molecules (H202 and Hcoo-) and the DMPO spintrapping/ EPR technique were used to measure the radical activity of both pristine and thermal treated samples. Results show that, after thermal treatment, both amphibole asbestos are completely converted into hematite, cristobalite and pyroxene, stili preserving the originai fibrous morphology (pseudomorphosis). Notably, in spite of the thermal decomposition, the heated samples show a radical production comparable to that of the pristine ones
    • …
    corecore