24 research outputs found
The diagnostic usefulness of serum total bile acid concentrations in the early phase of acute pancreatitis of varied etiologies
The most common causes of acute pancreatitis (AP) are biliary tract diseases with cholestasis and alcohol consumption. In 10%–15% of patients, etiology determination is difficult. Identification of the etiology allows for the implementation of adequate treatment. The aim of this study was to assess the utility of the serum concentrations of total bile acids (TBA) to diagnose AP etiology in the early phase of the disease. We included 66 patients with AP, admitted within the first 24 h from the onset of symptoms. TBA were measured in serum at 24, 48, and 72 h from the onset of AP, using an automated fifth generation assay. The bilirubin-to-TBA ratio (B/TBA) was calculated. TBA was highest on the first day of AP and decreased subsequently. In patients with biliary etiology, serum TBA was significantly higher compared to those with alcoholic and other etiologies. B/TBA was significantly higher in patients with alcoholic etiology. At admission, the cut-off values of 4.7 µmol/L for TBA and 4.22 for the B/TBA ratio allowed for a differentiation between biliary and other etiologies of AP with a diagnostic accuracy of 85 and 83%. Both TBA and B/TBA may help in the diagnosis of AP etiology in the early phase of AP
Recommended from our members
Eosinophils and Neutrophils-Molecular Differences Revealed by Spontaneous Raman, CARS and Fluorescence Microscopy
Leukocytes are a part of the immune system that plays an important role in the host's defense against viral, bacterial, and fungal infections. Among the human leukocytes, two granulocytes, neutrophils (Ne) and eosinophils (EOS) play an important role in the innate immune system. For that purpose, eosinophils and neutrophils contain specific granules containing protoporphyrin-type proteins such as eosinophil peroxidase (EPO) and myeloperoxidase (MPO), respectively, which contribute directly to their anti-infection activity. Since both proteins are structurally and functionally different, they could potentially be a marker of both cells' types. To prove this hypothesis, UV-Vis absorption spectroscopy and Raman imaging were applied to analyze EPO and MPO and their content in leukocytes isolated from the whole blood. Moreover, leukocytes can contain lipidic structures, called lipid bodies (LBs), which are linked to the regulation of immune responses and are considered to be a marker of cell inflammation. In this work, we showed how to determine the number of LBs in two types of granulocytes, EOS and Ne, using fluorescence and coherent anti-Stokes Raman scattering (CARS) microscopy. Spectroscopic differences of EPO and MPO can be used to identify these cells in blood samples, while the detection of LBs can indicate the cell inflammation process
Morphology and position of the right atrioventricular valve in relation to right atrial atructures
The right atrioventricular valve (RAV) is an important anatomical structure that prevents
blood backflow from the right ventricle to the right atrium. The complex anatomy of the RAV has lowered the success rate of surgical and transcatheter procedures performed within the area. The aim of this study was to describe the morphology of the RAV and determine its spatial position in relation to selected structures of the right atrium. We examined 200 randomly selected human adult hearts. All leaflets and commissures were identified and measured. The position of the RAV was defined. Notably, 3-leaflet configurations were present in 67.0% of cases, whereas 4-leaflet configurations were
present in 33.0%. Septal and mural leaflets were both significantly shorter and higher in 4-leaflet than in 3-leaflet RAVs. Significant domination of the muro-septal commissure in 3-leflet valves was noted. The supero-septal commissure was the most stable point within RAV circumference. In 3-leaflet valves, the muro-septal commissure was placed within the cavo-tricuspid isthmus area in 52.2% of cases, followed by the right atrial appendage vestibule region (20.9%). In 4-leaflet RAVs, the infero-septal commissure was located predominantly in the cavo-tricuspid isthmus area and infero-mural commissure was always located within the right atrial appendage vestibule region. The RAV is a highly variable structure. The supero-septal part of the RAV is the least variable component,
whereas the infero-mural is the most variable. The number of detected RAV leaflets significantly influences the relative position of individual valve components in relation to right atrial structures