4 research outputs found
Recommended from our members
A self-consistent model for the evolution of the gas produced in the debris disc of β Pictoris
This paper presents a self-consistent model for the evolution of gas produced in the debris disc of β Pictoris. Our model proposes that atomic carbon and oxygen are created from the photodissociation of CO, which is itself released from volatile-rich bodies in the debris disc due to grain–grain collisions or photodesorption. While the CO lasts less than one orbit, the atomic gas evolves by viscous spreading resulting in an accretion disc inside the parent belt and a decretion disc outside. The temperature, ionization fraction and population levels of carbon and oxygen are followed with the photodissociation region model CLOUDY, which is coupled to a dynamical viscous α model. We present new gas observations of β Pic, of C I observed with Atacama Pathfinder EXperiment and O I observed with , and show that these along with published CII and CO observations can all be explained with this new model. Our model requires a viscosity α > 0.1, similar to that found in sufficiently ionized discs of other astronomical objects; we propose that the magnetorotational instability is at play in this highly ionized and dilute medium. This new model can be tested from its predictions for high-resolution ALMA observations of C I. We also constrain the water content of the planetesimals in β Pic. The scenario proposed here might be at play in all debris discs and this model could be used more generally on all discs with C, O or CO detections.QK, MW and LM acknowledge support from the European Union through ERC grant number 279973. AJ acknowledges the support of the DISCSIM project, grant agreement 341137, funded by the European Research Council under ERC-2013-ADG.This is the final version of the article. It first appeared from Oxford University Press via http://dx.doi.org/10.1093/mnras/stw136
Exocometary gas structure, origin and physical properties around β Pictoris through ALMA CO multitransition observations
Recent ALMA observations unveiled the structure of CO gas in the 23 Myr-old
Pictoris planetary system, a component that has been discovered in many
similarly young debris disks. We here present ALMA CO J=2-1 observations, at an
improved spectro-spatial resolution and sensitivity compared to previous CO
J=3-2 observations. We find that 1) the CO clump is radially broad, favouring
the resonant migration over the giant impact scenario for its dynamical origin,
2) the CO disk is vertically tilted compared to the main dust disk, at an angle
consistent with the scattered light warp. We then use position-velocity
diagrams to trace Keplerian radii in the orbital plane of the disk. Assuming a
perfectly edge-on geometry, this shows a CO scale height increasing with radius
as , and an electron density (derived from CO line ratios through
NLTE analysis) in agreement with thermodynamical models. Furthermore, we show
how observations of optically thin line ratios can solve the primordial versus
secondary origin dichotomy in gas-bearing debris disks. As shown for
Pictoris, subthermal (NLTE) CO excitation is symptomatic of H densities
that are insufficient to shield CO from photodissociation over the system's
lifetime. This means that replenishment from exocometary volatiles must be
taking place, proving the secondary origin of the disk. In this scenario,
assuming steady state production/destruction of CO gas, we derive the CO+CO
ice abundance by mass in Pic's exocomets to be at most 6%,
consistent with comets in our own Solar System and in the coeval HD181327
system.LM acknowledges support by STFC and ESO through graduate studentships and, together with MCW and QK, by the European Union through ERC grant number 279973. Work of OP is funded by the Royal Society Dorothy Hodgkin Fellowship, and AMH gratefully acknowledges support from NSF grant AST-1412647.This is the final version of the article. It first appeared from Oxford University Press via https://doi.org/10.1093/mnras/stw241
Rapid CO gas dispersal from NO Lup’s class III circumstellar disc
We observed the K7 class III star NO Lup in an ALMA survey of the 1-3 Myr Lupus association and detected circumstellar dust and CO gas. Here we show that the J = 3-2 CO emission is both spectrally and spatially resolved, with a broad velocity width ∼19 km s-1 for its resolved size ∼1″ (∼130 au). We model the gas emission as a Keplerian disc, finding consistency, but only with a central mass of ∼11M☉, which is implausible given its spectral type and X-Shooter spectrum. A good fit to the data can also be found by modelling the CO emission as outflowing gas with a radial velocity ∼22 km s-1. We interpret NO Lup's CO emission as the first imaged class III circumstellar disc with outflowing gas. We conclude that the CO is continually replenished, but cannot say if this is from the break-up of icy planetesimals or from the last remnants of the protoplanetary disc. We suggest further work to explore the origin of this CO, and its higher than expected velocity in comparison to photoevaporative models
Rapid CO gas dispersal from NO Lup’s class III circumstellar disc
We observed the K7 class III star NO Lup in an ALMA survey of the 1-3 Myr Lupus association and detected circumstellar dust and CO gas. Here we show that the J = 3-2 CO emission is both spectrally and spatially resolved, with a broad velocity width ∼19 km s−1 for its resolved size ∼1″ (∼130 au). We model the gas emission as a Keplerian disc, finding consistency, but only with a central mass of ∼11M⊙, which is implausible given its spectral type and X-Shooter spectrum. A good fit to the data can also be found by modelling the CO emission as outflowing gas with a radial velocity ∼22 km s−1. We interpret NO Lup’s CO emission as the first imaged class III circumstellar disc with outflowing gas. We conclude that the CO is continually replenished, but cannot say if this is from the break-up of icy planetesimals or from the last remnants of the protoplanetary disc. We suggest further work to explore the origin of this CO, and its higher than expected velocity in comparison to photoevaporative models