9 research outputs found

    Le rôle de l’eau dans la structuration des silices mésoporeuses par des complexes électrostatiques

    No full text
    The objective of this PhD thesis is to understand the physico-chemical phenomena that govern the structural and porous properties of ordered mesoporous materials templated by polyion electrostatic complex micelles. It is defended that the sensitivity of the structure to the physico-chemical parameters of the system is due to the water content in the electrostatic complex which is in osmotic equilibrium with the synthesis medium. First, double-hydrophilic block copolymers (DHBC) were synthesized by ATRP controlled polymerization. They form polyion complex (PIC) micelles in the presence of oppositely charged polyelectrolytes such as the neomycin and oligochitosan weak bases. PIC micelles, colloidal analogues to coacervates, were characterized on a large range of concentration and their concomitant progressive compression was observed together with their ordering and finally their transition to lamellar phases. The core structure and composition were studied through the analysis of a model coacervate system, which macroscopically separates and results from complexation between neomycin and sodium polyacrylate. The coacervate contains up to 60 wt.% of water and exhibits the structure of a network of interpenetrated polymers. The water content in the coacervate depends on physicochemical conditions such as pH and concentration of the system, but also on the addition of osmolytes such as alcohol, PEG polymers or simple salts. A series of mesoporous materials were prepared and their structural and porous properties were modulated by simply varying the physicochemical conditions of the synthesis medium, with a unique DHBC/polyelectrolyte pair. Correlations between the volume fraction of the complex core of the mesogenic system and the obtained material structure could be established and it was shown that the contribution of water was highly significant. Increasing the water content in the coacervates induces an increase of the pore size in 2D hexagonal structures or favours the transition towards lamellar phases of lower curvature. As a conclusion, the synthesis of mesoporous materials mediated by the use of electrostatic complex micelles proved to be all the more environment-friendly as it uses water as the main porogen.Ce travail de thèse porte sur la compréhension des phénomènes physico-chimiques régissant les propriétés poreuses et structurales de matériaux mésoporeux structurés par des micelles complexes de polyions (PIC). Nous défendons que la sensibilité de la structure aux conditions physico-chimiques est due à l’eau contenue dans les complexes électrostatiques en équilibre osmotique avec l’ensemble de la solution.Le travail a consisté à synthétiser par ATRP des copolymères double-hydrophiles (DHBC) POE-b-PAA séquencés neutre-acide faible. En présence d’un polyélectrolyte faible basique, tel que la néomycine ou des oligochitosans, ils forment des micelles PIC, analogues colloïdaux des coacervats. Nous avons caractérisé les micelles PIC de structure cœur-couronne sur une large gamme de concentration et observé leur compression progressive concomitante à leur ordonnancement et finalement leur transition vers des phases lamellaires. La composition du cœur a été étudiée grâce à un système modèle coacervat, macroscopiquement séparé, obtenu par mélange de PAA et de néomycine. Le coacervat contient jusqu’à 60% d’eau et présente la structure d’un réseau de polymères neutres enchevêtrés. La quantité d’eau contenue dans le coacervat dépend des conditions physico-chimiques telles que le pH et la concentration mais également de l’ajout d’osmolytes tels que de l’alcool, du PEG ou du sel. Une série de matériaux mésoporeux a été synthétisée et nous avons montré qu’il était possible de modifier les propriétés structurales et poreuses des matériaux en utilisant un système PIC (couple DHBC + polyélectrolyte) unique, en jouant sur la physico-chimie des solutions de synthèse. Nous avons donc mis en relation les fractions volumiques de cœur complexe du système mésogène et la structure des matériaux obtenus et avons montré que la contribution de l’eau était très significative. L’augmentation de la quantité d’eau dans les coacervats induit une augmentation de la taille des pores ou la transition vers des mésostructures lamellaires de courbures plus faibles. Ainsi la synthèse de matériaux mésoporeux structurés par des complexes électrostatiques s’avère d’autant plus respectueuse de l’environnement qu’elle utilise comme agent structurant principal l’eau

    The role of water in the structuring of mesoporous silicas by electrostatic complexes

    No full text
    Ce travail de thèse porte sur la compréhension des phénomènes physico-chimiques régissant les propriétés poreuses et structurales de matériaux mésoporeux structurés par des micelles complexes de polyions (PIC). Nous défendons que la sensibilité de la structure aux conditions physico-chimiques est due à l’eau contenue dans les complexes électrostatiques en équilibre osmotique avec l’ensemble de la solution.Le travail a consisté à synthétiser par ATRP des copolymères double-hydrophiles (DHBC) POE-b-PAA séquencés neutre-acide faible. En présence d’un polyélectrolyte faible basique, tel que la néomycine ou des oligochitosans, ils forment des micelles PIC, analogues colloïdaux des coacervats. Nous avons caractérisé les micelles PIC de structure cœur-couronne sur une large gamme de concentration et observé leur compression progressive concomitante à leur ordonnancement et finalement leur transition vers des phases lamellaires. La composition du cœur a été étudiée grâce à un système modèle coacervat, macroscopiquement séparé, obtenu par mélange de PAA et de néomycine. Le coacervat contient jusqu’à 60% d’eau et présente la structure d’un réseau de polymères neutres enchevêtrés. La quantité d’eau contenue dans le coacervat dépend des conditions physico-chimiques telles que le pH et la concentration mais également de l’ajout d’osmolytes tels que de l’alcool, du PEG ou du sel. Une série de matériaux mésoporeux a été synthétisée et nous avons montré qu’il était possible de modifier les propriétés structurales et poreuses des matériaux en utilisant un système PIC (couple DHBC + polyélectrolyte) unique, en jouant sur la physico-chimie des solutions de synthèse. Nous avons donc mis en relation les fractions volumiques de cœur complexe du système mésogène et la structure des matériaux obtenus et avons montré que la contribution de l’eau était très significative. L’augmentation de la quantité d’eau dans les coacervats induit une augmentation de la taille des pores ou la transition vers des mésostructures lamellaires de courbures plus faibles. Ainsi la synthèse de matériaux mésoporeux structurés par des complexes électrostatiques s’avère d’autant plus respectueuse de l’environnement qu’elle utilise comme agent structurant principal l’eau.The objective of this PhD thesis is to understand the physico-chemical phenomena that govern the structural and porous properties of ordered mesoporous materials templated by polyion electrostatic complex micelles. It is defended that the sensitivity of the structure to the physico-chemical parameters of the system is due to the water content in the electrostatic complex which is in osmotic equilibrium with the synthesis medium. First, double-hydrophilic block copolymers (DHBC) were synthesized by ATRP controlled polymerization. They form polyion complex (PIC) micelles in the presence of oppositely charged polyelectrolytes such as the neomycin and oligochitosan weak bases. PIC micelles, colloidal analogues to coacervates, were characterized on a large range of concentration and their concomitant progressive compression was observed together with their ordering and finally their transition to lamellar phases. The core structure and composition were studied through the analysis of a model coacervate system, which macroscopically separates and results from complexation between neomycin and sodium polyacrylate. The coacervate contains up to 60 wt.% of water and exhibits the structure of a network of interpenetrated polymers. The water content in the coacervate depends on physicochemical conditions such as pH and concentration of the system, but also on the addition of osmolytes such as alcohol, PEG polymers or simple salts. A series of mesoporous materials were prepared and their structural and porous properties were modulated by simply varying the physicochemical conditions of the synthesis medium, with a unique DHBC/polyelectrolyte pair. Correlations between the volume fraction of the complex core of the mesogenic system and the obtained material structure could be established and it was shown that the contribution of water was highly significant. Increasing the water content in the coacervates induces an increase of the pore size in 2D hexagonal structures or favours the transition towards lamellar phases of lower curvature. As a conclusion, the synthesis of mesoporous materials mediated by the use of electrostatic complex micelles proved to be all the more environment-friendly as it uses water as the main porogen

    Templating Mesoporous Materials by Polyelectrolyte Micelles: The Role of Water

    No full text
    International audienceDouble hydrophilic block copolymers (DHBC) in the presence of multivalent oppositely charged ions form polyion complexes (PIC) in the micellar form. We use PIC micelles as an ecofriendly structuring agents for templating ordered mesoporous materials [1,2] : after concomittant micellization and silica condensation, the porosity of the final material is revealed by simple elution in water and the polyions can be recycled in successive synthesis batches. Various mesoporous silica materials have been obtained from cubic to lamellar, although lyotropic behavior of PIC micelles on their own has seldom been reported if ever. Moreover, the control over the structure of the final material is not solely determined by the asymmetry ratio of the diblock copolymer : a single PIC system yields different mesostructured silica materials depending on the physico-chemical conditions. In an attempt to address the relation between the mesoporous material structure and the lyotropic behavior of these new templating agents, our attention was brought to the role of water which is actually a prominent constituent of PIC micelles.PIC micelles of PEO-b-PAA/oligoamines have been studied. The water content of the core of the micelles has been addressed by establishing the complete phase diagram of the polyelectrolyte complex PAA/oligoamine in its coacervate form. It amounts to 50%, varies non-monotonously with concentration and can be tuned by ionic strength, pH. Shape transition and phase transition are revealed by swelling laws of the correlation peak position obtained from X-ray scattering. From light scattering and osmometry we establish the equation of state of a PEO-b-PAA/oligoamine electrostatic complex. Its lyotropic behavior is characterized by a transition of shape of the micelles at =0.16 and a transition to lamellar phase at =0.30 corresponding to various levels of deswelling of the corona and of the core.This study evidences the high compressibility of the core of the micelles as opposed to the core of amphiphilic copolymer micelles. This feature probably explains why lyotropic behavior of PIC micelles is less rich than the one of amphiphilic micelles. But it also brings versatility in the use of PIC micelles as templating agents for mesoporous materials

    Lyotropic behavior of polyelectrolyte complex micelles

    No full text
    International audienceUpon pH stimulus, double hydrophilic block copolymers form polyion complexes (PIC) in the micellar form. We used PIC micelles as ecofriendly templates for the synthesis of ordered mesoporous materials. The porosity of the final material is revealed by simple inversion of the pH stimulus. Various mesoporous silica materials have been obtained from cubic to lamellar.The control over the structure of the final material is expected to relate to the lyotropic behavior just as observed when micelles of amphiphilic molecules are used as template. However such lyotropic behavior has never been reported for PIC micelles. Moreover the same PIC leads to different structured silica materials depending on the physico-chemical conditions.Using X-rays and light scattering, optical microscopy and osmometry, we establish the equation of state (osmotic pressure vs volume fraction) of a PEO-b-PAA/oligoamine electrostatic complex. Its lyotropic behavior is characterized by a transition of shape at 0.16 w/w and a transition to a lamellar phase at 0.30w/w. The water content of the core of the micelles is addressed from the complete phase diagram of the polyelectrolyte complex in its coacervate form and explains why a single complex leads to porous material of different structure

    pH-mediated control over the mesostructure of ordered mesoporous materials templated by polyion complex micelles

    No full text
    Ordered mesoporous silica materials were prepared under different pH conditions by using a silicon alkoxide as a silica source and polyion complex (PIC) micelles as the structure-directing agents. PIC micelles were formed by complexation between a weak polyacid-containing double-hydrophilic block copolymer, poly(ethylene oxide)-b-poly(acrylic acid) (PEO-b-PAA), and a weak polybase, oligochitosan-type polyamine. As both the micellization process and the rate of silica condensation are highly dependent on pH, the properties of silica mesostructures can be modulated by changing the pH of the reaction medium. Varying the materials synthesis pH from 4.5 to 7.9 led to 2D-hexagonal, wormlike or lamellar mesostructures, with a varying degree of order. The chemical composition of the as-synthesized hybrid organic/inorganic materials was also found to vary with pH. The structure variations were discussed based on the extent of electrostatic complexing bonds between acrylate and amino functions and on the silica condensation rate as a function of pH

    Synthesis of stimuli-responsive double hydrophilic block copolymers by ATRP and RAFT and their use as nanostructure-directing agents of mesoporous silica materials

    No full text
    International audienceA series of double hydrophilic block copolymers DHBCs has been synthesized by controlled radical polymerization (Figure 1). Poly(ethylene oxide)-b-poly(acrylic acid) PEO-b-PAA was prepared by ATRP in acetone. PEO-b-PAA and PEO-b-Poly(N-isopropyl acrylamide) PEO-b-PNIPAM were prepared by RAFT using a PEO-based dithiobenzoate macro-RAFT agent, in water and dioxane respectively. Poly(poly(ethylene glycol) methyl ether acrylate)-b-PAA PmPEGA-b-PAA was prepared by RAFT in water using a trithiocarbonate RAFT agent. Poly(acrylamide)-b-PAA PAM-b-PAA and PAM-b-poly(3-acrylamidopropyl)trimethylammonium chloride) PAM-b-PAPTAC were prepared by RAFT/MADIX using xanthate as control agent, in water/ethanol for the PAM block and directly in water for the second block. The block copolymers have been characterized by SEC, pH titration, conductimetry, and capillary electrophoresis (CE).The reversible formation of micelles by variation of temperature in the case of PEO-b-PNIPAM, or by the mixing of polyelectrolyte DHBCs with a polyelectrolyte of opposite charge in the right range of pH (e.g. anionic PEO-b-PAA associated with cationic oligochitosan) has been studied. The micelles have been characterized by various scattering techniques and CE.Such stimuli-responsive (T, pH, ionic strength) micellar systems have been involved as structuring agents in the synthesis of nanostructured mesoporous silica by sol-gel process. A relationship between the composition of the DHBCs, the composition of the micelles, the experimental conditions of micelle formation and the final mesostructure of the silica materials is foreseen. This strategy has been applied to the preparation of drug-loaded silica for biomedical applications

    Synthesis of stimuli-responsive double hydrophilic block copolymers by ATRP and RAFT and their use as nanostructure-directing agents of mesoporous silica materials

    No full text
    International audienceA series of double hydrophilic block copolymers DHBCs has been synthesized by controlled radical polymerization (Figure 1). Poly(ethylene oxide)-b-poly(acrylic acid) PEO-b-PAA was prepared by ATRP in acetone. PEO-b-PAA and PEO-b-Poly(N-isopropyl acrylamide) PEO-b-PNIPAM were prepared by RAFT using a PEO-based dithiobenzoate macro-RAFT agent, in water and dioxane respectively. Poly(poly(ethylene glycol) methyl ether acrylate)-b-PAA PmPEGA-b-PAA was prepared by RAFT in water using a trithiocarbonate RAFT agent. Poly(acrylamide)-b-PAA PAM-b-PAA and PAM-b-poly(3-acrylamidopropyl)trimethylammonium chloride) PAM-b-PAPTAC were prepared by RAFT/MADIX using xanthate as control agent, in water/ethanol for the PAM block and directly in water for the second block. The block copolymers have been characterized by SEC, pH titration, conductimetry, and capillary electrophoresis (CE).The reversible formation of micelles by variation of temperature in the case of PEO-b-PNIPAM, or by the mixing of polyelectrolyte DHBCs with a polyelectrolyte of opposite charge in the right range of pH (e.g. anionic PEO-b-PAA associated with cationic oligochitosan) has been studied. The micelles have been characterized by various scattering techniques and CE.Such stimuli-responsive (T, pH, ionic strength) micellar systems have been involved as structuring agents in the synthesis of nanostructured mesoporous silica by sol-gel process. A relationship between the composition of the DHBCs, the composition of the micelles, the experimental conditions of micelle formation and the final mesostructure of the silica materials is foreseen. This strategy has been applied to the preparation of drug-loaded silica for biomedical applications
    corecore