107 research outputs found
Hypermetabolic Ipsilateral Supraclavicular and Axillary Lymphadenopathy: Optimal Time Point for Performing an 18F-FDG PET/CT after COVID-19 Vaccination.
BACKGROUND
We aimed to evaluate the incidence of severe acute respiratory syndrome coronavirus type-2 (SARS-CoV2) vaccine-related hypermetabolic lymphadenopathy (HLA) and evaluate which time point produces the least number of false-positive findings in an 18F-2-Fluor-2-desoxy-D-glucose positron emission tomography/computed tomography (18F-FDG PET/CT).
METHODS
For this retrospective, multi-center imaging study, patients with any form of SARS-CoV2 vaccination prior to an 18F-FDG-PET/CT were included between January 2021 and December 2021. Patients were divided into six groups according to the time point of vaccination prior to their 18F-FDG-PET/CT imaging, e.g., group one (0-6 days) and group six (35-80 days). As the reference standards, the SUVmax of the mediastinal blood pool (MBP) and the SUVmax contralateral reference lymph node (RL) were determined. (A) The absolute SUVmax of HLA, (B) the ratio of SUVmaxHLA/SUVmax mediastinal blood pool (rHLA/MBP), (C) the ratio SUVmax HLA vs. SUVmax contralateral reference lymph node (rHLA/RL), (D) and the incidence of HLA defined as rHLA/MBP > 1.5 were assessed.
RESULTS
Group one (days 0-6) showed the highest incidence of HLA 16/23 (70%) and rHLA/MBP (2.58 ± 2.1). All three parameters for HLA reduced statistically significantly in the comparison of Groups 1-3 (days 0-20) versus Groups 4-6 (days 21-80) (p-values < 0.001).
CONCLUSIONS
If feasible, an FDG PET should be postponed by at least 3 weeks after SARS-CoV2 vaccination, especially if an accurate evaluation of axillary status is required
Metabolic and amyloid PET network reorganization in Alzheimer's disease: differential patterns and partial volume effects
Alzheimer’s disease (AD) is a neurodegenerative disorder, considered a disconnection syndrome with regional molecular pattern abnormalities quantifiable by the aid of PET imaging. Solutions for accurate quantification of network dysfunction are scarce. We evaluate the extent to which PET molecular markers reflect quantifiable network metrics derived through the graph theory framework and how partial volume effects (PVE)-correction (PVEc) affects these PET-derived metrics 75 AD patients and 126 cognitively normal older subjects (CN). Therefore our goal is twofold: 1) to evaluate the differential patterns of [18F]FDG- and [18F]AV45-PET data to depict AD pathology; and ii) to analyse the effects of PVEc on global uptake measures of [18F]FDG- and [18F]AV45-PET data and their derived covariance network reconstructions for differentiating between patients and normal older subjects. Network organization patterns were assessed using graph theory in terms of “degree”, “modularity”, and “efficiency”. PVEc evidenced effects on global uptake measures that are specific to either [18F]FDG- or [18F]AV45-PET, leading to increased statistical differences between the groups. PVEc was further shown to influence the topological characterization of PET-derived covariance brain networks, leading to an optimised characterization of network efficiency and modularisation. Partial-volume effects correction improves the interpretability of PET data in AD and leads to optimised characterization of network properties for organisation or disconnection
Metabolic and amyloid PET network reorganization in Alzheimer’s disease : differential patterns and partial volume effects
Alzheimer’s disease (AD) is a neurodegenerative disorder, considered a disconnection syndrome with regional molecular pattern abnormalities quantifiable by the aid of PET imaging. Solutions for accurate quantification of network dysfunction are scarce. We evaluate the extent to which PET molecular markers reflect quantifiable network metrics derived through the graph theory framework and how partial volume effects (PVE)-correction (PVEc) affects these PET-derived metrics 75 AD patients and 126 cognitively normal older subjects (CN). Therefore our goal is twofold: 1) to evaluate the differential patterns of [18F]FDG- and [18F]AV45-PET data to depict AD pathology; and ii) to analyse the effects of PVEc on global uptake measures of [18F]FDG- and [18F]AV45-PET data and their derived covariance network reconstructions for differentiating between patients and normal older subjects. Network organization patterns were assessed using graph theory in terms of “degree”, “modularity”, and “efficiency”. PVEc evidenced effects on global uptake measures that are specific to either [18F]FDG- or [18F]AV45-PET, leading to increased statistical differences between the groups. PVEc was further shown to influence the topological characterization of PET-derived covariance brain networks, leading to an optimised characterization of network efficiency and modularisation. Partial-volume effects correction improves the interpretability of PET data in AD and leads to optimised characterization of network properties for organisation or disconnection
Reduced D2/D3 receptor binding of extrastriatal and striatal regions in temporal lobe epilepsy
OBJECTIVE:
Dopamine is an endogenous neuromodulator in cortical circuits and the basal ganglia. In animal models of temporal lobe epilepsy (TLE), seizure threshold is modulated to some extent by dopamine, with D1-receptors having a pro- and D2-receptors an anticonvulsant effect. We aimed to extend our previously reported results on decreased D2/D3 receptor binding in the lateral epileptogenic temporal lobe and to correlate them with demographic and seizure variables to gain a more comprehensive understanding of the underlying involvement of the dopaminergic system in the epileptogenesis of TLE.
METHODS:
To quantify D2/D3 receptor binding, we studied 21 patients with TLE and hippocampal sclerosis (13 left- and eight right-sided) and 18 controls using PET with the high-affinity dopamine D2/D3-receptor ligand 18F-Fallypride to image striatal and extrastriatal binding. TLE was defined by interictal and ictal video-EEG, MRI and 18F-Fluorodeoxyglucose PET. Voxel-based statistical and regions-of-interest analyses were performed.
RESULTS:
18F-Fallypride binding potential was significantly reduced in the affected temporal lobe and bilateral putamen. A positive correlation between age at onset of epilepsy and [18F]FP BPnd (binding potential non-displaceable) in temporal regions on the epileptogenic side was found, as well as a negative correlation between epilepsy duration and [18F]FP BPnd in the temporal pole on the epileptogenic side and a positive correlation between the estimated number of lifetime GTCS and [18F]FP BPnd in the hippocampus on the epileptogenic side.
SIGNIFICANCE:
The areas of reduced D2/D3 receptor availability correspond to “the irritative zone” surrounding the epileptogenic area. Moreover, reduced D2/D3 receptor availability was detectable in the basal ganglia, which are suspected to be involved in a control circuit for epileptic seizures. The correlational analysis additionally suggests that increased epilepsy duration leads to increasing impairment of the dopaminergic system
Functional Plasticity after Unilateral Vestibular Midbrain Infarction in Human Positron Emission Tomography
The aim of the study was to uncover mechanisms of central compensation of vestibular function at brainstem, cerebellar, and cortical levels in patients with acute unilateral midbrain infarctions presenting with an acute vestibular tone imbalance. Eight out of 17 patients with unilateral midbrain infarctions were selected on the basis of signs of a vestibular tone imbalance, e.g., graviceptive (tilts of perceived verticality) and oculomotor dysfunction (skew deviation, ocular torsion) in F18-fluordeoxyglucose (FDG)-PET at two time points: A) in the acute stage, and B) after recovery 6 months later. Lesion-behavior mapping analyses with MRI verified the exact structural lesion sites. Group subtraction analyses and comparisons with healthy controls were performed with Statistic Parametric Mapping for the PET data. A comparison of PET A of acute-stage patients with that of healthy controls showed increases in glucose metabolism in the cerebellum, motion-sensitive visual cortex areas, and inferior temporal lobe, but none in vestibular cortex areas. At the supratentorial level bilateral signal decreases dominated in the thalamus, frontal eye fields, and anterior cingulum. These decreases persisted after clinical recovery in contrast to the increases. The transient activations can be attributed to ocular motor and postural recovery (cerebellum) and sensory substitution of vestibular function for motion perception (visual cortex). The persisting deactivation in the thalamic nuclei and frontal eye fields allows alternative functional interpretations of the thalamic nuclei: either a disconnection of ascending sensory input occurs or there is a functional mismatch between expected and actual vestibular activity. Our data support the view that both thalami operate separately for each hemisphere but receive vestibular input from ipsilateral and contralateral midbrain integration centers. Normally they have gatekeeper functions for multisensory input to the cortex and automatic motor output to subserve balance and locomotion, as well as sensorimotor integration
Upregulation of PSMA Expression by Enzalutamide in Patients with Advanced mCRPC
In this study, we investigated upregulation of prostate-specific membrane antigen (PSMA)
by enzalutamide in a cohort (n = 30) of patients with advanced metastatic castration-resistant prostate
cancer (mCRPC). Patients were examined by [68Ga]Ga-PSMA-11 PET/CT pre- and post-enzalutamide
medication (mean 13 ± 7 days). Imaging results were compared based on quantification of wholebody PSMA tumor burden: total lesion PSMA (TLP) and normalized TLP values to liver (TLP-LR)
and to parotid gland (TLP-PR). In addition, lesion-based analyses were performed. The median
(mean) increases in TLP, TLP-LR and TLP-PR after enzalutamide medication were 10.1% (20.2%),
29.5% (34.8%) and 27.6% (24.4%), respectively. These increases were statistically significant (p = 0.002,
p < 0.001, and p < 0.001), while prostate-specific antigen (PSA) serum values did not change significantly (p = 0.483). The increase was independent of prior patient exposure to enzalutamide. SUVmax
increased substantially (>10%) in 49.6% of target lesions. The relative change was significantly higher
in the subgroup of lesions with SUVmax < 10 (p < 0.001). In conclusion, short-term enzalutamide
medication significantly increases PSMA expression in patients with mCRPC, irrespective of prior enzalutamide exposure. The relative PSMA upregulation effect seems to be more pronounced in lesions
with only moderate baseline PSMA expression. Enzalutamide may provide a potential enhancer
medication for PSMA-targeted radioligand therapy
Modeling Vestibular Compensation: Neural Plasticity Upon Thalamic Lesion
The present study in rats was conducted to identify brain regions affected by the interruption of vestibular transmission and to explore selected aspects of their functional connections. We analyzed, by positron emission tomography (PET), the regional cerebral glucose metabolism (rCGM) of cortical, and subcortical cerebral regions processing vestibular signals after an experimental lesion of the left laterodorsal thalamic nucleus, a relay station for vestibular input en route to the cortical circuitry. PET scans upon galvanic vestibular stimulation (GVS) were conducted in each animal prior to lesion and at post-lesion days (PLD) 1, 3, 7, and 20, and voxel-wise statistical analysis of rCGM at each PLD compared to pre-lesion status were performed. After lesion, augmented metabolic activation by GVS was detected in cerebellum, mainly contralateral, and in contralateral subcortical structures such as superior colliculus, while diminished activation was observed in ipsilateral visual, entorhinal, and somatosensory cortices, indicating compensatory processes in the non-affected sensory systems of the unlesioned side. The changes in rCGM observed after lesion resembled alterations observed in patients suffering from unilateral thalamic infarction and may be interpreted as brain plasticity mechanisms associated with vestibular compensation and substitution. The second set of experiments aimed at the connections between cortical and subcortical vestibular regions and their neurotransmitter systems. Neuronal tracers were injected in regions processing vestibular and somatosensory information. Injections into the anterior cingulate cortex (ACC) or the primary somatosensory cortex (S1) retrogradely labeled neuronal somata in ventral posteromedial (VPM), posterolateral (VPL), ventrolateral (VL), posterior (Po), and laterodorsal nucleus, dorsomedial part (LDDM), locus coeruleus, and contralateral S1 area. Injections into the parafascicular nucleus (PaF), VPM/VPL, or LDDM anterogradely labeled terminal fields in S1, ACC, insular cortex, hippocampal CA1 region, and amygdala. Immunohistochemistry showed tracer-labeled terminal fields contacting cortical neurons expressing the mu-opioid receptor. Antibodies to tyrosine hydroxylase, serotonin, substance P, or neuronal nitric oxide-synthase did not label any of the traced structures. These findings provide evidence for opioidergic transmission in thalamo-cortical transduction
Value of Combined PET Imaging with [18F]FDG and [68Ga]Ga-PSMA-11 in mCRPC Patients with Worsening Disease during [177Lu]Lu-PSMA-617 RLT
Despite the promising results of prostate-specific membrane antigen (PSMA)-targeted
radioligand therapy (RLT) in metastatic castration-resistant prostate cancer (mCRPC), some patients
show worsening disease during PSMA-RLT. We investigated the value of combined [18F]FDG and
[
68Ga]Ga-PSMA-11 PET imaging in this setting. In n = 29 mCRPC patients with worsening disease
after a median of four cycles of [177Lu]Lu-PSMA-617 RLT, combined [18F]FDG and [68Ga]Ga-PSMA11 PET imaging was performed to detect [18F]FDG-avid lesions with low or no PSMA expression
(mismatch lesions). To evaluate prognostic implication of mismatch, survival analyses regarding
presence, location, and [18F]FDG PET-derived parameters such as SUVmax, metabolic tumor volume
(MTVm), and total lesion glycolysis (TLGm) of mismatch findings were performed. Seventeen patients
(59%) showed at least one mismatch metastasis. From the time point of combined PET imaging,
the median overall survival (OS) of patients with mismatch findings was significantly (p = 0.008)
shorter than those without (3.3 vs. 6.1 mo). Patients with a high MTVm revealed a significantly
(p = 0.034) shorter OS of 2.6 mo than patients with low MTVm (5.3 mo). Furthermore, patients
with hepatic mismatch showed a significantly (p = 0.049) shorter OS than those without (2.9 vs. 5.3
mo). Difference in OS regarding SUVmax and TLGm was not significant. In mCRPC patients with
worsening disease during PSMA-RLT, combined [18F]FDG and [68Ga]Ga-PSMA-11 PET imaging
is essential to identify mismatch findings, as these are associated with poor outcomes requiring a
change in therapy management
Early molecular imaging response assessment based on determination of total viable tumor burden in [68Ga]Ga-PSMA-11 PET/CT independently predicts overall survival in [177Lu]Lu-PSMA-617 radioligand therapy
Purpose
In patients with metastatic castration-resistant prostate cancer (mCRPC) treated with prostate-specific membrane antigen-targeted radioligand therapy (PSMA-RLT), the predictive value of PSMA PET/CT-derived response is still under investigation. Early molecular imaging response based on total viable tumor burden and its association with overall survival (OS) was explored in this study.
Methods
Sixty-six mCRPC patients who received [177Lu]Lu-PSMA-617 RLT within a prospective patient registry (REALITY Study, NCT04833517) were analyzed. Patients received a [68Ga]Ga-PSMA-11 PET/CT scan before the first and after the second cycle of PSMA-RLT. Total lesion PSMA (TLP) was determined by semiautomatic whole-body tumor segmentation. Molecular imaging response was assessed by change in TLP and modified PERCIST criteria. Biochemical response was assessed using standard serum PSA and PCWG3 criteria. Both response assessment methods and additional baseline parameters were analyzed regarding their association with OS by univariate and multivariable analysis.
Results
By molecular imaging, 40/66 (60.6%) patients showed partial remission (PR), 19/66 (28.7%) stable disease (SD), and 7/66 (10.6%) progressive disease (PD). Biochemical response assessment revealed PR in 34/66 (51.5%) patients, SD in 20/66 (30.3%), and PD in 12/66 (18.2%). Response assessments were concordant in 49/66 (74.3%) cases. On univariate analysis, both molecular and biochemical response (p = 0.001 and 0.008, respectively) as well as two baseline characteristics (ALP and ECOG) were each significantly associated with OS. The median OS of patients showing molecular PR was 24.6 versus 10.7 months in the remaining patients (with SD or PD). On multivariable analysis molecular imaging response remained an independent predictor of OS (p = 0.002), eliminating biochemical response as insignificant (p = 0.515).
Conclusion
The new whole-body molecular imaging–derived biomarker, early change of total lesion PSMA (TLP), independently predicts overall survival in [177Lu]Lu-PSMA-617 RLT in mCRPC, outperforming conventional PSA-based response assessment. TLP might be considered a more distinguished and advanced biomarker for monitoring PSMA-RLT over commonly used serum PSA
- …