166 research outputs found

    Estimation of vertical mixing in the upper ocean at Station P from chlorofluorcarbons

    Get PDF
    Vertical mixing (Kv) in the upper ocean is estimated from chlorofluorocarbons (CFC\u27s) F-11 and F-12 data collected on 5 cruises (1982, 1985, 1992, 1993, 1995) near Station P (50N, 145W). A one-dimensional advection-diffusion model was fitted to the data from each cruise to estimate vertical mixing (Kv) and upwelling velocity (w). With constant Kv and w, the average value of Kv and w was 0.4 ± 0.1 cm2 s−1 and 1.2 ± 0.4 m yr−1 respectively for the depth range 0–900 m below the base of the mixed layer. This case produced Kv values that increased with time, and modeled CFC concentrations that were higher than observed in the upper 200 m and lower than observed in the deeper water (200–900 m). Both of these conditions are consistent with Kv values that increased with depth. Fitting the one-dimensional advection-diffusion model to the data with Kv inversely related to the buoyancy frequency reduced the model-data misfit by 40%, produced consistent estimates of Kv for all cruises and reduced the systematic differences in the model data misfits. From this model Kv and w at the base of the mixed layer were 0.15 ± 0.4 cm2 s−1 and 0.5 ± 0.15 m yr−1, respectively. The results strongly supported a Kv that increased with depth. Modeled anthropogenic CO2 penetration at Station P with the inverse buoyancy frequency scaling of Kv, produced results consistent with the observed anthropogenic CO2 penetration inferred from Σ CO2, alkalinity and apparent oxygen utilization measurements

    Nutrient supply to anticyclonic meso-scale eddies off western Australia estimated with artificial tracers released in a circulation model

    Get PDF
    The phytoplankton distribution off western Australia in the period from April to October is unique in that high biomass is generally associated with anticyclonic eddies and not with cyclonic eddies. As the western Australian region is oligotrophic this anomalous feature must be related to differing nutrient supply pathways to the surface mixed layer of cyclonic and anticyclonic eddies. A suite of modelled abiotic tracers suggests that cyclonic eddies are predominantly supplied by diapycnal processes that remain relatively weak until June–July, when they rapidly increase because of deepening surface mixed layers, which start to tap into the nutrient-replete waters below the euphotic zone. To the contrary, we find that anticyclonic eddies are predominantly supplied by injection of shelf waters, which carry elevated levels of inorganic nutrients and biomass. These injections start with the formation of the eddies in April–May, continue well into the austral winter and reach as far as several hundred kilometers offshore. The diapycnal supply of nutrients is suppressed in anticyclonic eddies since the injection of warm, low-salinity shelf waters delays the erosion of the density gradient at the base of the mixed layer. Our results are consistent with the observed seasonal cycles of chlorophyll a and observation of particulate organic matter export out of the surface mixed layer of an anticyclonic eddy in the region

    Information content of in situ and remotely sensed chlorophyll-a: Learning from size-structured phytoplankton model

    Full text link
    © 2018 Chlorophyll-a measurements in the form of in situ observations and satellite ocean colour products are commonly used in data assimilation to calibrate marine biogeochemical models. Here, a two size-class phytoplankton biogeochemical model, with a 0D configuration, was used to simulate the surface chlorophyll-a dynamics (simulated surface Chl-a) for cyclonic and anticyclonic eddies off East Australia. An optical model was then used to calculate the inherent optical properties from the simulation and convert them into remote-sensing reflectance (Rrs). Subsequently, Rrs was used to produce a satellite-like estimate of the simulated surface Chl-a concentrations through the MODIS OC3M algorithm (simulated OC3M Chl-a). Identical parameter optimisation experiments were performed through the assimilation of the two separate datasets (simulated surface Chl-a and simulated OC3M Chl-a), with the purpose of investigating the contrasting information content of simulated surface Chl-a and remotely-sensed data sources. The results we present are based on the analysis of the distribution of a cost function, varying four parameters of the biogeochemical model. In our idealized experiments the simulated OC3M Chl-a product is a poor proxy for the total simulated surface Chl-a concentration. Furthermore, our result show the OC3M algorithm can underestimate the simulated chlorophyll-a concentration in offshore eddies off East Australia (Case I waters), because of the weak relationship between large-sized phytoplankton and remote-sensing reflectance. Although Case I waters are usually characteristic of oligotrophic environments, with a photosynthetic community typically represented by relatively small-sized phytoplankton, mesoscale features such as eddies can generate seasonally favourable conditions for a photosynthetic community with a greater proportion of large phytoplankton cells. Furthermore, our results show that in mesoscale features such as eddies, in situ chlorophyll-a observations and the ocean colour products can carry different information related to phytoplankton sizes. Assimilating both remote-sensing reflectance and measurements of in situ chlorophyll-a concentration reduces the uncertainty of the parameter values more than either data set alone, thus reducing the spread of acceptable solutions, giving an improved simulation of the natural environment

    A novel estimate of ocean oxygen utilisation points to a reduced rate of respiration in the ocean interior

    Get PDF
    The Apparent Oxygen Utilisation (AOU) is a classical measure of the amount of oxygen respired in the ocean's interior. We show that AOU systematically overestimates True Oxygen Utilisation (TOU) in 6 coupled circulation-biogeochemical ocean models. This is due to atmosphere–ocean oxygen disequilibria in the subduction regions, consistent with previous work. We develop a simple, new, observationally-based approach which we call Evaluated Oxygen Utilisation (EOU). In this approach, we take into account the impact of the upper ocean oxygen disequilibria into the interior, considering that transport takes place predominantly along isopycnal surfaces. The EOU approximates the TOU with less than half of the bias of AOU in all 6 models despite large differences in the physical and biological components of the models. Applying the EOU approach to a global observational dataset yields an oxygen consumption rate 25% lower than that derived from AOU-based estimates, for a given ventilation rate

    Assessing carbon dioxide removal through global and regional ocean alkalinization under high and low emission pathways

    Get PDF
    Atmospheric carbon dioxide (CO2) levels continue to rise, increasing the risk of severe impacts on the Earth system, and on the ecosystem services that it provides. Artificial ocean alkalinization (AOA) is capable of reducing atmospheric CO2 concentrations and surface warming and addressing ocean acidification. Here, we simulate global and regional responses to alkalinity (ALK) addition (0.25 PmolALK yr−1) over the period 2020–2100 using the CSIRO-Mk3L-COAL Earth System Model, under high (Representative Concentration Pathway 8.5; RCP8.5) and low (RCP2.6) emissions. While regionally there are large changes in alkalinity associated with locations of AOA, globally we see only a very weak dependence on where and when AOA is applied. On a global scale, while we see that under RCP2.6 the carbon uptake associated with AOA is only ∼ 60 % of the total, under RCP8.5 the relative changes in temperature are larger, as are the changes in pH (140 %) and aragonite saturation state (170 %). The simulations reveal AOA is more effective under lower emissions, therefore the higher the emissions the more AOA is required to achieve the same reduction in global warming and ocean acidification. Finally, our simulated AOA for 2020–2100 in the RCP2.6 scenario is capable of offsetting warming and ameliorating ocean acidification increases at the global scale, but with highly variable regional responses

    On the superposition of mean advective and eddy-induced transports in global ocean heat and salt budgets

    Get PDF
    Ocean thermal expansion is a large contributor to observed sea level rise, which is expected to continue into the future. However, large uncertainties exist in sea level projections among climate models, partially due to intermodel differences in ocean heat uptake and redistribution of buoyancy. Here, the mechanisms of vertical ocean heat and salt transport are investigated in quasi-steady-state model simulations using the Australian Community Climate and Earth-System Simulator Ocean Model (ACCESS-OM2). New insights into the net effect of key physical processes are gained within the superresidual transport (SRT) framework. In this framework, vertical tracer transport is dominated by downward fluxes associated with the large-scale ocean circulation and upward fluxes induced by mesoscale eddies, with two distinct physical regimes. In the upper ocean, where high-latitude water masses are formed by mixed layer processes, through cooling or salinification, the SRT counteracts those processes by transporting heat and salt downward. In contrast, in the ocean interior, the SRT opposes dianeutral diffusion via upward fluxes of heat and salt, with about 60% of the vertical heat transport occurring in the Southern Ocean. Overall, the SRT is largely responsible for removing newly formed water masses from the mixed layer into the ocean interior, where they are eroded by dianeutral diffusion. Unlike the classical advective–diffusive balance, dianeutral diffusion is bottom intensified above rough bottom topography, allowing an overturning cell to develop in alignment with recent theories. Implications are discussed for understanding the role of vertical tracer transport on the simulation of ocean climate and sea level
    • …
    corecore