2,134 research outputs found
A framework for the construction of generative models for mesoscale structure in multilayer networks
Multilayer networks allow one to represent diverse and coupled connectivity patterns—such as time-dependence, multiple subsystems, or both—that arise in many applications and which are difficult or awkward to incorporate into standard network representations. In the study of multilayer networks, it is important to investigate mesoscale (i.e., intermediate-scale) structures, such as dense sets of nodes known as communities, to discover network features that are not apparent at the microscale or the macroscale. The ill-defined nature of mesoscale structure and its ubiquity in empirical networks make it crucial to develop generative models that can produce the features that one encounters in empirical networks. Key purposes of such models include generating synthetic networks with empirical properties of interest, benchmarking mesoscale-detection methods and algorithms, and inferring structure in empirical multilayer networks. In this paper, we introduce a framework for the construction of generative models for mesoscale structures in multilayer networks. Our framework provides a standardized set of generative models, together with an associated set of principles from which they are derived, for studies of mesoscale structures in multilayer networks. It unifies and generalizes many existing models for mesoscale structures in fully ordered (e.g., temporal) and unordered (e.g., multiplex) multilayer networks. One can also use it to construct generative models for mesoscale structures in partially ordered multilayer networks (e.g., networks that are both temporal and multiplex). Our framework has the ability to produce many features of empirical multilayer networks, and it explicitly incorporates a user-specified dependency structure between layers. We discuss the parameters and properties of our framework, and we illustrate examples of its use with benchmark models for community-detection methods and algorithms in multilayer networks
One- and two-particle microrheology
We study the dynamics of rigid spheres embedded in viscoelastic media and
address two questions of importance to microrheology. First we calculate the
complete response to an external force of a single bead in a homogeneous
elastic network viscously coupled to an incompressible fluid. From this
response function we find the frequency range where the standard assumptions of
microrheology are valid. Second we study fluctuations when embedded spheres
perturb the media around them and show that mutual fluctuations of two
separated spheres provide a more accurate determination of the complex shear
modulus than do the fluctuations of a single sphere.Comment: 4 pages, 1 figur
Stability of Monomer-Dimer Piles
We measure how strong, localized contact adhesion between grains affects the
maximum static critical angle, theta_c, of a dry sand pile. By mixing dimer
grains, each consisting of two spheres that have been rigidly bonded together,
with simple spherical monomer grains, we create sandpiles that contain strong
localized adhesion between a given particle and at most one of its neighbors.
We find that tan(theta_c) increases from 0.45 to 1.1 and the grain packing
fraction, Phi, decreases from 0.58 to 0.52 as we increase the relative number
fraction of dimer particles in the pile, nu_d, from 0 to 1. We attribute the
increase in tan(theta_c(nu_d)) to the enhanced stability of dimers on the
surface, which reduces the density of monomers that need to be accomodated in
the most stable surface traps. A full characterization and geometrical
stability analysis of surface traps provides a good quantitative agreement
between experiment and theory over a wide range of nu_d, without any fitting
parameters.Comment: 11 pages, 12 figures consisting of 21 eps files, submitted to PR
The response function of a sphere in a viscoelastic two-fluid medium
In order to address basic questions of importance to microrheology, we study
the dynamics of a rigid sphere embedded in a model viscoelastic medium
consisting of an elastic network permeated by a viscous fluid. We calculate the
complete response of a single bead in this medium to an external force and
compare the result to the commonly-accepted, generalized Stokes-Einstein
relation (GSER). We find that our response function is well approximated by the
GSER only within a particular frequency range determined by the material
parameters of both the bead and the network. We then discuss the relevance of
this result to recent experiments. Finally we discuss the approximations made
in our solution of the response function by comparing our results to the exact
solution for the response function of a bead in a viscous (Newtonian) fluid.Comment: 12 pages, 2 figure
Redundancy, Feedback, and Robustness in the Arabidopsis thaliana BZR/BEH Gene Family
Organismal development is remarkably robust, tolerating stochastic errors to produce consistent, so-called canalized adult phenotypes. The mechanistic underpinnings of developmental robustness are poorly understood, but recent studies implicate certain features of genetic networks such as functional redundancy, connectivity, and feedback. Here, we examine the BZR/BEH gene family, whose function contributes to embryonic stem development in the plant Arabidopsis thaliana, to test current assumptions on functional redundancy and trait robustness. Our analyses of BZR/BEH gene mutants and mutant combinations revealed that functional redundancy among these gene family members is not necessary for trait robustness. Connectivity is another commonly cited determinant of robustness; however, we found no correlation between connectivity among gene family members or their connectivity with other transcription factors and effects on developmental robustness. Instead, our data suggest that BEH4, the earliest diverged family member, modulates developmental robustness. We present evidence indicating that regulatory cross-talk among gene family members is integrated by BEH4 to promote wild-type levels of developmental robustness. Further, the chaperone HSP90, a known determinant of developmental robustness, appears to act via BEH4 in maintaining robustness of embryonic stem length. In summary, we demonstrate that even among closely related transcription factors, trait robustness can arise through the activity of a single gene family member, challenging common assumptions about the molecular underpinnings of robustness
Chapter 5: Food Security
The current food system (production, transport, processing, packaging, storage, retail, consumption, loss and waste) feeds the great majority of world population and supports the livelihoods of over 1 billion people. Since 1961, food supply per capita has increased more than 30%, accompanied by greater use of nitrogen fertilisers (increase of about 800%) and water resources for irrigation (increase of more than 100%). However, an estimated 821 million people are currently undernourished, 151 million children under five are stunted, 613 million women and girls aged 15 to 49 suffer from iron deficiency, and 2 billion adults are overweight or obese. The food system is under pressure from non-climate stressors (e.g., population and income growth, demand for animal-sourced products), and from climate change. These climate and non-climate stresses are impacting the four pillars of food security (availability, access, utilisation, and stability)
‘Filip’ or flop? Managing public relations and the Latin American reaction to the 1966 FIFA World Cup
The 1966 FIFA World Cup has become part of the iconography of its hosts and champions, England. Extant literature has tended to focus on the cultural and symbolic legacy of the tournament, or engaged with diplomatic relations between Britain and North Korea. Contrastingly, we use archival sources from footballing and government institutions to explore the less studied topic of how the tournament was reported and perceived in Latin America, where England had commercial interests and influence, but where there were allegations that FIFA, the FA and even the UK government manipulated the tournament to the advantage of England and other European teams. We provide fresh perspectives on the social and cultural significance of the 1966 FIFA World Cup by analysing how the tournament’s organizers attempted to manage the situation and resulting negative public relations, and how 1966 fits within longer-term footballing and diplomatic relations between England and Latin America
A pleurocidin analogue with greater conformational flexibility, enhanced antimicrobial potency and in vivo therapeutic efficacy.
Antimicrobial peptides (AMPs) are a potential alternative to classical antibiotics that are yet to achieve a therapeutic breakthrough for treatment of systemic infections. The antibacterial potency of pleurocidin, an AMP from Winter Flounder, is linked to its ability to cross bacterial plasma membranes and seek intracellular targets while also causing membrane damage. Here we describe modification strategies that generate pleurocidin analogues with substantially improved, broad spectrum, antibacterial properties, which are effective in murine models of bacterial lung infection. Increasing peptide-lipid intermolecular hydrogen bonding capabilities enhances conformational flexibility, associated with membrane translocation, but also membrane damage and potency, most notably against Gram-positive bacteria. This negates their ability to metabolically adapt to the AMP threat. An analogue comprising D-amino acids was well tolerated at an intravenous dose of 15 mg/kg and similarly effective as vancomycin in reducing EMRSA-15 lung CFU. This highlights the therapeutic potential of systemically delivered, bactericidal AMPs
Staphylococcus aureus α-toxin impairs early neutrophil localization via electrogenic disruption of store-operated calcium entry
The pore-forming S. aureus α-toxin (Hla) contributes to virulence and disease pathogenesis. While high concentrations of toxin induce cell death, neutrophils exhibit relative resistance to lysis, suggesting that the action of Hla may not be solely conferred by lytic susceptibility. Using intravital microscopy, we observed that Hla disrupts neutrophil localization and clustering early in infection. Hla forms a narrow, ion-selective pore, suggesting that Hla may dysregulate calcium or other ions to impair neutrophil function. We found that sub-lytic Hla did not permit calcium influx but caused rapid membrane depolarization. Depolarization decreases the electrogenic driving force for calcium, and concordantly, Hla suppressed calcium signaling in vitro and in vivo and calcium-dependent leukotriene B4 (LTB4) production, a key mediator of neutrophil clustering. Thus, Hla disrupts the early patterning of the neutrophil response to infection, in part through direct impairment of neutrophil calcium signaling. This early mis-localization of neutrophils may contribute to establishment of infection
- …