144 research outputs found

    Characterizing the query behavior in peer-to-peer file sharing systems

    Get PDF
    This paper characterizes the query behavior of peers in a peer-to-peer (P2P) file sharing system. In contrast to previous work, which provides various aggregate workload statistics, we characterize peer behavior in a form that can be used for constructing representative synthetic workloads for evaluating new P2P system designs. In particular, the analysis exposes heterogeneous behavior that occurs on different days, in different geographical regions (i. e., Asia, Europe, and North America) or during different periods of the day. The workload measures include the fraction of connected sessions that are passive (i. e., issue no queries), the duration of such sessions, and for each active session, the number of queries issued, time until first query, query interarrival time, time after last query, and distribution of query popularity. Moreover, the key correlations in these workload measures are captured in the form of conditional distributions, such that the correlations can be accurately reproduced in a synthetic workload. The characterization is based on trace data gathered in the Gnutella P2P system over a period of 40 days. To characterize system-independent user behavior, we eliminate queries that are specific to the Gnutella system software, such as re-queries that are automatically issued by some client implementations to improve system responsiveness

    Improving TCP Performance for Multihop Wireless Networks

    Get PDF
    In this paper, we present a comprehensive performance evaluation of TCP NewReno and TCP Vegas with and without ACK thinning for static multihop wireless IEEE 802.11 networks. Opposed to previous studies, we consider not only IEEE 802.11 operating in ad hoc mode with 2 Mbit/s bandwidth, but also with 5.5 Mbit/s and 11 Mbit/s bandwidths. Simulation results using ns-2 show that TCP Vegas achieves between 15% and 83% more goodput and between 57% and 99% fewer packet retransmissions than TCP NewReno. Considering fairness among multiple TCP flows, we show that using TCP Vegas results in between 21% and 95% fairness improvement compared to TCP NewReno. The reduced amount of packet retransmissions of TCP Vegas also leads to significant savings of energy consumption. The paper gives insight on the particular reasons for such performance advantages of TCP Vegas in comparison to TCP NewReno
    • …
    corecore