
  
Improving TCP Performance for Multihop Wireless Networks* 

 
 

Sherif M. ElRakabawy, Christoph Lindemann 
University of Dortmund 

Department of Computer Science 
August-Schmidt-Str. 12 

44227 Dortmund Germany 
http://mobicom.cs.uni-dortmund.de/ 

 

Mary K. Vernon 
University of Wisconsin - Madison 
Department of Computer Sciences 

1210 West Dayton Street 
Madison, WI 53706 

http://www.cs.wisc.edu/~vernon/ 
 

 
Abstract 

In this paper, we present a comprehensive performance 
evaluation of TCP NewReno and TCP Vegas with and 
without ACK thinning for static multihop wireless IEEE 
802.11 networks. Opposed to previous studies, we 
consider not only IEEE 802.11 operating in ad hoc mode 
with 2 Mbit/s bandwidth, but also with 5.5 Mbit/s and 11 
Mbit/s bandwidths. Simulation results using ns-2 show 
that TCP Vegas achieves between 15% and 83% more 
goodput and between 57% and 99% fewer packet 
retransmissions than TCP NewReno. Considering 
fairness among multiple TCP flows, we show that using 
TCP Vegas results in between 21% and 95% fairness 
improvement compared to TCP NewReno. The reduced 
amount of packet retransmissions of TCP Vegas also 
leads to significant savings of energy consumption. The 
paper gives insight on the particular reasons for such 
performance advantages of TCP Vegas in comparison to 
TCP NewReno. 

1 Introduction 
Numerous mobile applications for ad hoc networked 

PDAs and laptops over IEEE 802.11 wireless technology 
require a reliable transport protocol like TCP. Such 
multihop wireless networks possess several properties, 
which are different to the wired Internet for which widely 
deployed TCP implementations like TCP Reno and TCP 
NewReno have been optimized. In particular, the 
wireless channel is a scarce resource shared among nodes 
within their radio range. Thus, TCP segments may not 
only be lost due to buffer overflow, but also due to link-
layer contention caused by hidden terminals [5]. A 
hidden terminal is a potential sending node in the 
receiver’s neighborhood, which cannot detect the sender 
and may disrupt an ongoing transmission of a TCP 
segment. In fact, as mentioned in [5] and further verified 
by our simulation, for multihop wireless networks using 
IEEE 802.11 most losses experienced by TCP are due to 
packet drops at the link layer incurred by hidden terminal 
effects and not due to buffer overflow.  
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TCP Vegas was introduced by Brakmo et al. [3] as an 
alternative TCP variant with innovative features for 
congestion control and packet retransmission. Opposed to 
the widely deployed transport protocol TCP NewReno, 
TCP Vegas tries to sense incipient congestion by 
monitoring the current throughput. It has been shown that 
for the Internet, TCP Vegas achieves considerably higher 
throughput and fewer losses than TCP Reno [3], [10]. 
However, little work has been done to investigate the 
performance, fairness, and energy efficiency of TCP 
Vegas in multi-hop wireless networks over IEEE 802.11.  

Recently, commercial products based on the IEEE 
802.11g standard have become available providing 
bandwidths up to 108 Mbit/s, [8]. As a consequence, 
future ad hoc networked PDAs and laptops over IEEE 
802.11 wireless technology may well operate with 
bandwidths higher than 2 Mbit/s. Thus, opposed to 
previous studies [5], [14], we consider not only IEEE 
802.11 wireless network technology operating in ad hoc 
mode with 2 Mbit/s bandwidth, but also with 5.5 Mbit/s 
and with 11 Mbit/s bandwidth.  

In this paper, we present a comprehensive 
performance evaluation of TCP NewReno and TCP 
Vegas for static multihop wireless IEEE 802.11 
networks. We consider an h-hop chain without cross 
traffic, a grid topology with six competing flows and a 
random topology with ten concurrent flows, over IEEE 
802.11 wireless network technology. To get intuition on 
the optimum achievable goodput over an IEEE 802.11 
network with a given bandwidth, we consider an 
optimally paced UDP protocol, which exploits 
knowledge of the optimal packet transmission rate in a 
chain topology. Simulation results obtained by ns-2 [4] 
show that TCP Vegas clearly outperforms TCP NewReno 
in static multihop wireless networks. In fact, TCP Vegas 
achieves between 15% and 83% more goodput and 
between 57% and 99% fewer packet retransmissions than 
TCP NewReno. Furthermore, the more conservative 
window control of TCP Vegas yields between 21% and 
95% better fairness than TCP NewReno in multi-flow 
environments. The reduced amount of packet 
retransmissions of TCP Vegas also results in significant 
savings of energy consumption. We further show that 
thinning TCP acknowledgements, recently proposed for 
TCP NewReno over IEEE 802.11 [1], improves both 
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fairness and goodput of TCP Vegas and TCP NewReno 
for increasing bandwidth, letting TCP Vegas with ACK 
thinning achieve the best overall results among all 
examined TCP variants.  

The remainder of this paper is organized as follows. 
Section 2 summarizes related work on TCP for multihop 
wireless networks. In Section 3, we recall the congestion 
control algorithm of TCP Vegas as well as thinning 
acknowledgements for improving TCP performance. A 
comprehensive performance study of TCP Vegas versus 
TCP NewReno with and without thinning 
acknowledgements is presented in Section 4. Finally, 
concluding remarks are given. 
2 Related Work 

Several efforts for improving the performance of TCP 
in mobile ad hoc networks based on IEEE 802.11 
technology have recently been reported. Fu et al. [5] 
pointed out the hidden terminal problem in such 
networks and proposed two enhancements: adaptive 
pacing on the link-layer and link-layer RED. Using 
simulation with ns-2 [4], they showed that these link-
layer enhancements improve throughput by 5% to 30%. 
They considered TCP NewReno over IEEE 802.11 with 
2 Mbit/s bandwidth. Furthermore, they commented that 
TCP NewReno achieves better performance than TCP 
Vegas for an h-hop chain topology with h ≥ 9. We are 
presenting a comprehensive performance study of TCP 
Vegas versus TCP NewReno. Consistent with [5], we 
observe that for the h-hop chain the optimum TCP 
window size is given by h/4. Opposed to [5], our 
simulation results evidently show that TCP Vegas with 
parameters α = β = 2 outperforms TCP NewReno in 
static multihop wireless networks.  

Altman and Jiménez [1] proposed an adaptive scheme 
for delaying TCP acknowledgements (subsequently 
denoted as ACK thinning) in order to improve TCP 
throughput in multihop wireless networks. They also 
considered TCP NewReno over IEEE 802.11 with 2 
Mbit/s bandwidth. Using simulation with ns-2, they 
showed that for an h-hop chain, ACK thinning yields 
around 50% more throughput. Building upon their 
results, we are also considering ACK thinning, though, 
not only for TCP NewReno, but also for TCP Vegas. 
Beyond [1], [5], we are comparing TCP NewReno and 
TCP Vegas with and without ACK thinning against a 
paced UDP in order to get intuition how an optimum 
transport protocol over IEEE 802.11 may perform. 
Furthermore, we are not only considering 2 Mbit/s 
bandwidth, but also 5.5 Mbit/s and 11 Mbit/s bandwidths. 

In [15], Saadawi and Xu investigated the performance 
of TCP Vegas in multihop wireless networks among four 
further TCP variants, reporting 15% to 20% more 
goodput for TCP Vegas. However, the results of the 
study were based on a chain topology with a maximum 
of 7 hops and a single TCP flow. Opposed to [15], we 
investigate the performance of TCP Vegas in more 
complex, multi-flow environments while regarding a 
further key performance aspect, namely TCP fairness. 
Moreover, using simulation, we determine the best values 

for the Vegas specific parameters α and β in order to 
achieve the best performance for TCP Vegas. Opposed to 
[15], our simulation study shows that TCP Vegas 
achieves up to 83% more goodput than TCP NewReno. 

Several authors introduced TCP enhancements for 
coping with mobility in ad hoc wireless networks over 
IEEE 802.11. Holland and Vaidya [7] introduced explicit 
link failure notification (ELFN) as a feedback mechanism 
from the network in order to help TCP to distinguish 
between congestion losses and losses induced by link 
failures due to mobility. To help TCP coping with 
mobility, Wang and Zhang [13] proposed detection and 
out-of-order response (DOOR) as a new way to make 
TCP adapt to frequent route changes without relaying on 
feedback from the network. We focus on TCP 
performance in static wireless networks instead, though, 
our results may well be utilized together with the findings 
of either [7] or [13] in order to optimize TCP 
performance in mobile ad hoc networks based on IEEE 
802.11. 

Numerous performance studies of TCP Vegas have 
been reported for the Internet e.g., [3], [10]. Furthermore, 
several analytical performance models for TCP Vegas 
have been introduced e.g., [10], [12]. Our simulation 
study considers multihop IEEE 802.11 wireless networks 
possessing substantially different properties than the 
wired Internet, though, confirms the result that TCP 
Vegas outperforms TCP NewReno both in terms of 
goodput and percentage of packet losses. To get more 
intuition on the performance of TCP Vegas with and 
without ACK thinning over IEEE 802.11 multihop 
wireless networks, it will be helpful to extend one of 
these analytical performance models. 

3 Background 
3.1 TCP Vegas 

 We assume that the reader is familiar with basic 
mechanisms of TCP such as slow start and congestion 
avoidance algorithms, the two methods for loss detection: 
duplicate ACKs and timeouts, etc. Currently, Reno (and 
NewReno) constitute the most widely known and 
deployed congestion control algorithm for TCP. While 
TCP NewReno has proven to be well suited for the 
Internet, TCP NewReno incorporates a quite aggressive 
method for predicting the available bandwidth by 
provoking packet losses. TCP Vegas constitute an 
alternative TCP variant with innovative features for 
congestion control and packet retransmission. A source 
in TCP Vegas anticipates the onset of congestion by 
monitoring the difference between the throughput it is 
expecting to see and the actually realizing throughput. 
Compared to TCP NewReno, TCP Vegas includes a 
modified retransmission strategy as well as new methods 
for congestion detection during slow start and congestion 
avoidance.  

To keep the paper self-contained, the following 
outlines the main innovation of TCP Vegas with respect 
to NewReno. The congestion control mechanism of TCP 
NewReno uses packet loss as indication of congestion.  
 



Table 1: Base parameter setting for TCP NewReno 
and TCP Vegas 

Variable Meaning Value 

Wmax
Maximum window advertised by 
the receiver Wmax = 64 

Winit
Initial window used in slow start 
and after a timeout Winit = 1 

α 
Vegas throughput threshold 
measured in packets α = 2 

γ 
Vegas thresholds measured for 
exiting slow start γ = α 

 
Thus, TCP NewReno cannot detect the incipient signs 

of network congestion before losses occur and, thus, 
cannot prevent losses. TCP NewReno constitutes a 
reactive protocol, as it requires losses to determine the 
available bandwidth of the connection. Opposed to that, 
TCP Vegas tries to proactively detect congestion in its 
incipient stages, and subsequently reduces the TCP 
window in an attempt to prevent packet loss. To detect 
congestion, once every round trip time (RTT), TCP 
Vegas utilizes the current window size (W), the most 
recent RTT, and the minimum RTT observed so far 
(baseRTT) for computing the difference between the 
expected throughput, given by W/baseRTT and the actual 
throughput, estimated by W/RTT. That is, [3], [12]: 

( )diff W baseRTT W RTT baseRTT= −  
The goal of the TCP Vegas congestion avoidance 

algorithm lies in keeping diff between specific lower and 
upper thresholds, denoted by α and β. Throughout this 
paper, we set α = β because it has been shown that this 
parameter setting improves fairness [6]. Thus, once every 
RTT while not in slow start mode, TCP Vegas adjusts the 
window size: 

1

1

W if diff
W W if diff

W if diff

α
α
α

+ <⎧
⎪= =⎨
⎪ − >⎩

1

 Furthermore, TCP Vegas contains a more 
conservative slow start behavior as TCP NewReno as 
well as four innovative mechanisms for congestion 
recovery. Due to space limitations, we omit their 
descriptions and refer to [3] and [10]. Table 1 
summarizes the parameters of TCP NewReno and Vegas 
considered in the simulation study presented in Section 4. 
3.2 Thinning the ACK Stream in TCP 

In this section, we briefly describe the dynamic ACK 
thinning approach introduced in [1], which aims to 
decrease contention on the MAC layer by thinning the 
ACK stream that competes with the TCP packet flow. 
Dynamic ACK thinning operates as follows: A parameter 
d defines the number of packets received by the TCP sink 
before an acknowledgment is generated. This parameter 
is set dynamically according to the sequence numbers of 
the TCP packets received and increases gradually from 1 
to 4 using three defined thresholds S1, S2 and S3. 
Specifically, for a received TCP packet with a sequence 

•                                                  •                                                 
1 Note that this case rarely occurs, since diff takes positive real values 
whereas α is a natural number. 

number n, d = 1 if n ≤ S1, d = 2 if S1 ≤ n < S2, d = 3 
if S2 ≤ n < S3 and d = 4 if n ≥ S3. According to [1], 
appropriate values for the thresholds are S1 = 2, S2 = 5 
and S3 = 9. The reason for setting d dynamically 
according to the sequence numbers of the received 
packets is to prevent the TCP sink from experiencing a 
lack of TCP packets and freezing for a timeout of 100ms 
as a default value. This would be the case if the 
parameter d becomes larger than the current TCP 
window size. Since d is only being set dynamically at the 
beginning of the TCP connection, such case cannot be 
prevented if the TCP window size decreases below d 
during the remainder of the TCP connection, for instance 
at the initial phase of each time TCP enters slow start.  
4 Comparative Performance Study 
4.1 The Simulation Environment and the 

considered Performance Measures 
To evaluate the performance of TCP NewReno and 

TCP Vegas with and without ACK thinning as well as 
paced UDP over IEEE 802.11 wireless networks, we 
conduct simulation experiments using the network 
simulator ns-2 [4]. We employ the implementations of 
TCP NewReno and TCP Vegas2 as well as the MAC 
layer according to the IEEE 802.11 standard for wireless 
communication provided by ns-2. Consistent with the 
case in reality where the transmission range of a node 
would be smaller than its interference range, all MAC 
layer parameters of IEEE 802.11 are configured to 
provide a transmission range of 250m and a carrier 
sensing range as well as an interference range of 550m. 
The transmission of each data packet on the MAC layer 
is preceded by a Request-To-Send/Clear-To-Send 
(RTS/CTS) handshake. We consider not only bandwidths 
of 2 Mbit/s, but also 5.5 and 11 Mbit/s. The higher 
bandwidths are already provided by the standard IEEE 
802.11b and may well be utilized in ad hoc mode in the 
new standard IEEE 802.11g. Furthermore, we developed 
ns-2 transport agents implementing the ACK thinning 
mechanism and the paced UDP tailored to the considered 
scenarios. We assume that all TCP packets are of size 
1460 bytes. For all nodes, we assume a buffer size of 50 
packets. We use AODV [11] as an ad hoc routing 
protocol. Through our simulations we show that the 
behavior of AODV has a significant impact on the 
performance of TCP dependent on the intensity of the 
existing hidden terminal effects. 

In all experiments, we conduct steady-state 
simulation starting with an initially idle system. In each 
run, we simulate continues FTP flows until 110.000 
packets are successfully transmitted and split the 
simulation output in batches of size 10.000 packets. The 
first batch is discarded as initial transient. The considered 
performance measures are derived from the remaining 10 
batches with 95% confidence intervals by the batch 
means method. For almost all data points, the width of 
the confidence intervals is below 5% of the measure’s 

 
2 As already noted in [12], the TCP Vegas implementation provided by 
ns-2 contains several subtle bugs, which we fixed. 



value. As performance measure, we consider the goodput 
given by the number of bytes successfully transmitted 
divided by the length of each batch, the average number 
of packet retransmissions on the transport layer per flow, 
the average window size per flow, and the overall link 
layer dropping probability per flow. In the grid and 
random scenarios, we consider the measures aggregate 
goodput given by the sum of the goodput of individual 
flows as well as the individual goodput achieved by each 
flow. 

As in [5], we consider Jain’s fairness index given by: 
2

2

1 1

n n

i i
i i

x n x
= =

⎛ ⎞
⎜ ⎟
⎝ ⎠
∑ ∑ , 

where n is the number of flows and xi denotes the 
goodput of the i-th flow. 

Consistent with [5], in the simulation experiments 
conducted, all packet losses are due to link layer 
contention caused by hidden terminal effects. We do not 
observe buffer overflows in any performance experiment. 
Opposed to [5], our simulation study evidently shows 
that TCP Vegas with appropriately chosen parameters 
clearly outperforms TCP NewReno both for a short and a 
large number of hops. 
4.2 Optimally Paced UDP over IEEE 802.11 

In order to get intuition on the optimum achievable 
goodput over an IEEE 802.11 network for the chain 
topology and a given bandwidth, we consider an 
optimally paced UDP protocol as a transport agent. To 
define the packet transmission rate, we use a constant bit 
rate (CBR) traffic generator while setting the UDP packet 
size to 1460 bytes, equal to the TCP packet size we use 
through all of our simulations. Subsequently, we denote 
this transport protocols as paced UDP. Paced UDP shed 
also some light on the impact of link layer contention of 
IEEE 802.11 to a transport protocol for the chain 
topology. 

To determine the optimum packet transmission rate 
for which paced UDP achieves the best channel 
utilization, we determine the minimal link layer 
propagation delay for 4 hops in a h-hop chain topology 
with a single flow as shown in Figure 1 of Section 4.3. 
That is, we calculate the 4-hop propagation delay for the 
first packet assuming a zero queuing delay. In order to 
keep the hidden terminal effects minimal, node i may 
only transmit packet pj if packet pj-1 has been already 
forwarded by node i+3, where i = 1,2,..,h-4. Table 2 
shows the 4-hop propagation delay for different 
bandwidths. Subsequently, we take the 4-hop 
propagation delay as an initial value for the time t 
between two successive packet transmissions for 
determining the optimum packet transmission rate. In an 
off-line simulation experiment, we increase t gradually 
until we observe the maximum goodput. No TCP variant 
can achieve as much goodput as paced UDP for the 
following two reasons: (1) the entire traffic and MAC 
overhead caused by the ACK flow is neglected in paced 
UDP; (2) paced UDP transmits packets with the optimal 
 

Table 2: 4-hop propagation delay for different 
bandwidths 

2 Mbit/s 5 Mbit/s 11 Mbit/s 
29 ms 12 ms 8 ms 

rate for each hop number, while TCP is window-based 
and has to probe for the available bandwidth. 
Furthermore, in paced UDP, we neglect packet 
retransmissions and determine the actual number of 
packets received by the UDP sink in terms of goodput.  
4.3 TCP Performance for h-hop Chain with  a 

Single Flow 
We consider an equally spaced chain comprising of 

h+1 nodes (h hops) with a single flow. Each node is 200 
meters apart from each of its adjacent nodes. TCP 
packets travel along the chain from the leftmost node 
(i.e., the sender) to the rightmost node (i.e., the receiver). 
Figure 1 shows the h-hop chain topology with a single 
FTP flow without cross traffic. As observed in [5], 
successive packet transmissions of the single flow 
interfere with each other as they move along the chain. In 
fact, a potential sending node i constitutes a hidden 
terminal to an ongoing transmission from node (i-3) to  
(i-2) where i = 4,5,..,h+1. Node i cannot sense the 
ongoing transmission from (i-3) to (i-2) and thus starts 
transmitting, causing collisions with the ongoing 
transmission. Such hidden terminal effects result from 
the fact that the interference range of each node is much 
larger than its transmission range, and since the IEEE 
802.11 protocol cannot achieve global packet scheduling 
between all nodes, such effects are inevitable with the 
standard IEEE 802.11 specifications. In the first 
experiment, we consider TCP Vegas with different 
values of the parameter α. The goal of this study lies in 
determining an optimal value of α for TCP Vegas 
without ACK thinning. Figures 2 to 4 show performance 
curves for TCP Vegas with α = 2, 3, 4. In Figure 2, we 
observe that TCP Vegas with α = 2 achieves the highest 
goodput for a chain length between 4 and 20 hops. For 
longer chains, the goodput of TCP is almost equal for all 
α values. Figure 3 shows that the average TCP window 
size increases for increasing α. Thus, TCP Vegas with α 
= 2 has the smallest average window size. Figure 4 plots 
the goodput in a 7-hop chain for different bandwidths. 
We observe that for 2 Mbit/s bandwidth TCP Vegas with 
α = 2 achieves the highest goodput. For 5.5 Mbit/s 
bandwidth TCP Vegas with α = 2 yields only slightly 
higher goodput than the two other variants whereas for 
11 Mbit/s bandwidth, all three TCP variants yield an 
equal goodput. Note that we observe a sub-linear growth 
of goodput with increasing bandwidth. This is because 
according to the IEEE 802.11 specifications, RTS, CTS 
and ACK control packets are sent at 1 Mbit/s regardless 
of the bandwidth used for data packets to achieve 
compatibility between different IEEE 802.11 versions. 
Thus, the relative overhead for sending control packets 
on the MAC layer increases with increasing data rate.  

 
Fig. 1: 7-hop chain topology with a single flow 
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Fig 2: h-hop chain with 2 Mbit/s: TCP Vegas goodput 

vs. number of hops  
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Fig 3: h-hop chain with 2 Mbit/s: TCP Vegas average 

window size vs. number of hops 
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Fig 4: 7-hop chain: TCP Vegas goodput for different 

bandwidths 
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Fig 5: h-hop chain with 2 Mbit/s: TCP Vegas with ACK 

thinning: Goodput vs. number of hops 
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Fig 6: h-hop chain with 2 Mbit/s: Goodput vs. number 

of hops 
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Fig 7: h-hop chain with 2 Mbit/s: Retransmissions vs. 

number of hops 
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Fig 8: h-hop chain with 2 Mbit/s: Window size vs. 

number of hops 
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Fig 9: h-hop chain with 2 Mbit/s: Number of false 

route failures vs. number of hops 



In the second experiment, we consider TCP Vegas 
with ACK thinning for different values of the parameter 
α. Again, the goal of this study lies in determining the 
optimal value of the parameter α. Figure 5 shows the 
goodput of TCP Vegas without ACK thinning with α = 2 
as well as for TCP Vegas with ACK thinning 
for different values of α. We observe that except for h = 
4, TCP Vegas with α = 2 performs slightly better than all 
other variants along all hops. Specifically, we notice that 
TCP Vegas with α = 2 and ACK thinning performs 
slightly worse than TCP Vegas with α = 2 for h > 6.  

The reason for this performance difference is that the 
TCP window for TCP Vegas with α = 2 and ACK 
thinning often decreases to 3, leading to a lack of 
acknowledgments at the TCP receiver which only 
acknowledges every fourth TCP packet for all packets 
with a sequence number greater than 8, as described in 
Section 3.2. 

From the previous two experiments, we conclude that 
TCP Vegas with α = 2 performs best for most number of 
hops and a bandwidth of 2 Mbit/s. Although increasing 
the bandwidth improves the performance of TCP Vegas 
with larger values of α due to the decreased contention 
on the MAC layer, TCP Vegas with α = 2 remains the 
best choice. 

In the third experiment, we consider TCP NewReno, 
TCP Vegas, TCP NewReno with ACK thinning, and 
paced UDP for the h-hop chain with varying hop count. 
As measures, we consider goodput, average number of 
retransmissions, average window size of the flow and 
number of false route failures as a function of chain 
length. The bandwidth is kept fixed to 2 Mbit/s. Figures 6 
to 9 plot performance curves derived from this 
experiment. In Figure 6, we observe that TCP Vegas has 
up to 83% higher goodput than TCP NewReno (i.e., 
about 75% for 8 hops). Furthermore, for most number of 
hops, even TCP NewReno with ACK thinning performs 
slightly worse than TCP Vegas without ACK thinning. 
For both TCP Vegas and TCP NewReno with ACK 
thinning, the goodput decreases much slower with 
increasing number of hops than for TCP NewReno, 
indicating that both TCP Vegas and TCP NewReno with 
ACK thinning are significantly less sensitive to hidden 
terminal effects. From Figure 6, we also conclude that the 
goodput of TCP Vegas lies between 23% for 4 hops and 
52% for 32 hops below the optimal goodput achieved by 
paced UDP, whereas the goodput of TCP NewReno lies 
between 28% for 4 hops and 63% for 32 hops below the 
goodput of paced UDP. Such big gap between both TCP 
variants and paced UDP outlines the significant impact of 
link layer interactions on the performance of TCP. 

Figure 7 shows that TCP Vegas causes up to 99% less 
retransmissions than TCP NewReno. In fact, the number 
of retransmissions stays very low for TCP Vegas for any 
number of hops. Note that a reduction of retransmitted 
packets directly translates in a reduction of power 
consumption, which is a critical factor for resource 
constrained mobile devices. Opposed to that, the average 
number of retransmissions of TCP NewReno almost 

doubles from 6 to 8 hops reaching its peak and, 
subsequently, decreases gradually. This results from the 
fact that in a chain of seven and more hops, two hidden 
terminals may simultaneously disrupt the transmission of 
a single node, as it is the case for node 4 in a 7-hop chain. 
In contrast, a chain of up to six hops can produce at most 
a single hidden terminal effect for a single node. For TCP 
NewReno with ACK thinning, the average number of 
retransmissions is considerably lower than without ACK 
thinning. This is because ACK thinning results for TCP 
NewReno a smaller average window size as observed in 
Figure 8. Recall that during the slow start phase, TCP 
NewReno increases the window size dependent on the 
receipt of acknowledgments, specifically by one packet 
for each received ACK. In our simulations we have 
noticed that for h ≥ 7, TCP NewReno operates during 
more than 40% of the connection in slow start. Since 
ACK thinning reduces the number of ACKs, this results 
in a less aggressive growth in the window size for TCP 
NewReno, and, thus, a smaller average window size. 
Figure 8 also shows that the average window size of TCP 
Vegas lies in the range 3.5 to 5.5 for increasing number 
of hops between 4 and 40, providing an explanation for 
the low number of retransmissions investigated in Figure 
7. Comparing the average window size for longer chains 
to the optimum of h/4 [5], we find that TCP Vegas is 
close to the optimum for 32 hops, while it keeps the 
window size too small for longer chains. Recall that the 
parameter α determines the window size.  

In order to get further insight in the impact of routing 
on the acquired results, we investigate the influence of 
false route failures on the performance of the examined 
TCP variants. False route failures result in case the link 
layer fails to deliver a packet to the next hop, either after 
seven unsuccessful transmissions for RTS control 
packets or after four unsuccessful transmissions for data 
packets. After the link layer notifies the routing layer 
about the transmission failure, the routing layer assumes 
that the route to the next hop is broken and thus deletes it 
from its routing table before broadcasting a route error 
message. In most such cases, the TCP sender times out 
and tries to retransmit the lost packet, initiating a new 
route discovery procedure, which causes additional 
traffic overhead. Figure 9 shows the number of false 
route failures for varying hop number. Consistent with 
the previous results, we observe that TCP NewReno 
causes significantly more false route failures than TCP 
Vegas, specifically 93% to 100%. That indicates that the 
larger average window size of TCP NewReno results in 
more packet drops on the link layer and thus more false 
route failures. For TCP NewReno with ACK thinning, 
we notice that it causes no false route failures for h < 8, 
then the curve increases sharply at h = 8. This effect is 
similar to what we have observed in Figure 7 for TCP 
NewReno at h = 8 and is due to the same reason that we 
have already mentioned at that point. Generally, all TCP 
variants, except for TCP NewReno with ACK Thinning 
at h < 8, experience less false route failures with 
increasing hop number. This is because the link layer 
contention decreases with increasing hop number since 



packets in flight distribute more evenly among the nodes 
[5], leading to less packet drops and thus, to less false 
route failures. We conclude from Figures 6 to 9 that both 
TCP NewReno with ACK thinning and TCP Vegas are 
protocols of choice for improving TCP goodput in 
multihop chains and a bandwidth of 2 Mbit/s. 
Furthermore, in environments with limited power 
resources, TCP Vegas gains advantages over TCP 
NewReno with ACK thinning, since it reduces power 
consumption by avoiding unnecessary packet 
retransmissions and false route failures by using a 
smaller average TCP window size.  

In the fourth experiment, we consider TCP NewReno, 
TCP Vegas, TCP NewReno with ACK thinning, TCP 
Vegas with ACK thinning, and paced UDP for a chain 
with 7 hops. We consider bandwidths of 2, 5.5, and 11 
Mbit/s. Furthermore, we consider TCP NewReno, for 
which we bound the TCP window size artificially as 
proposed in [5]. The maximum window allowed, 
MaxWin, is optimized for a chain topology with 7 hops. 
Consistent with [5], we found MaxWin = 3 for all 
bandwidths, i.e., with MaxWin = 3, TCP NewReno 
reaches the highest goodput for h = 7. Again, goodput 
increases sub-linearly with increasing bandwidth. To 
determine the optimal transmission rate for paced UDP, 
Figure 10 shows the goodput of paced UDP for different 
times t between two successive packet transmissions. The 
experiments show that paced UDP achieves optimal 
goodput for topt = 35.7ms. Consistent with [9], we find 
that goodput drops rapidly when t gets smaller than topt, 
while it degrades graciously when t exceeds topt. That is, 
for t < topt the transmission rate is too high causing 
increased link layer contention due to hidden terminal 
effects. For t > topt, link layer contention is minimal, but 
the rate decreases linearly causing such gracious goodput 
decrease. We conclude from Figure 10 that the optimal 
pacing rate is extremely sensitive to network conditions. 
Thus, each effective rate-based transport protocol will 
require a low-latency algorithm for quickly adapting the 
transmission rate to changing network conditions. 

As primary performance measures, we consider the 
goodput, which is shown for different bandwidths in 
Figure 11. To get deeper insight in how goodput is 
achieved by the individual TCP variants, we furthermore 
investigate the average number of retransmissions, the 
average window size of the flow as well as the overall 
link layer dropping probability (averaged over all 
intermediate node), which are shown in Figures 12 to 14. 
Recall that the bars for 2 Mbit/s exactly represent the 
results for the 7-hop chain in Figures 6 to 8. Extending 
the findings of Figures 6 to 8, we find that applying ACK 
thinning in TCP Vegas does not improve goodput at 2 
Mbit/s, but reduces drops on the link layer, as shown in 
Figure 14. However, reduction of link layer drops does 
not translate in increased goodput, since link layer drops 
are not visible to TCP Vegas on the transport layer, as 
shown in Figure 12. This indicates that the load on the 
link layer is moderate, so that all packets can be sent after 
a few retries. In fact, applying ACK thinning in Vegas 
will even result in an increased number of packet 

retransmissions on the transport layer, since a missing 
ACK may result in the retransmission of multiple 
packets. With increasing network bandwidth, packet  
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Fig 10: 7-hop-chain with 2 Mbit/s: Goodput vs. 

packet inter-sending time 

0

200

400

600

800

1000

1200

1400

1600

115.52

G
oo

dp
ut

[K
bi

t/s
]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window
Paced UDP

0

200

400

600

800

1000

1200

1400

1600

115.52

G
oo

dp
ut

[K
bi

t/s
]

Bandwidth [Mbit/s]

Vegas
NewReno

Vegas ACK Thinning
NewReno ACK Thinning

NewReno Optimal Window
Paced UDP

 
Fig 11: 7-hop chain: Goodput for different 

bandwidths 
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Fig 12: 7-hop chain: Retransmissions for different 

bandwidths 
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Fig 13: 7-hop chain: Window size for different 

bandwidths 
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 Fig 14: 7-hop chain: Packet dropping probability for 

different bandwidths 
retransmissions on the transport and packet drop 
probability on the link layer decrease, since data packets 
can be transmitted in shorter time, reducing the 
probability for packet collisions. Furthermore, the 
improvement achieved by ACK thinning increases for 
both TCP NewReno and TCP Vegas, since fewer 
collisions of data packets with ACK packets enable better 
utilization of available bandwidth. Comparing TCP 
Vegas to the other TCP variants, we find that it performs 
significantly better than TCP NewReno, and as good as 
TCP NewReno with optimal window for all bandwidths. 
Nevertheless, TCP Vegas is outperformed by both TCP 
Vegas with ACK thinning and TCP NewReno with ACK 
thinning for increasing bandwidth availability, with a gap 
of about 20% in goodput for 11 Mbit/s. Comparing both 
TCP Vegas with ACK thinning and TCP NewReno with 
ACK thinning to the optimal goodput achieved by paced 
UDP, we find that both are close to the optimum with a 
goodput gap of at most 32% at 2 Mbit/s, and only 23% at 
11 Mbit/s. Considering power consumption, we find that 
both TCP Vegas and TCP Vegas with ACK thinning are 
superior to the TCP NewReno variants, since they reduce 
packet retransmissions on the transport layer. 
Furthermore, TCP Vegas with ACK thinning has the 
least link layer drops among all variants. We conclude 
from Figures 11 to 14 that both TCP Vegas with ACK 
thinning and TCP NewReno with ACK thinning are the 
protocols of choice for improving TCP goodput in a 
chain scenario. In environments with limited energy, 
TCP Vegas with ACK thinning gains advantages over 
TCP NewReno with ACK thinning, since it reduces 
power consumption by avoiding unnecessary packet 
retransmissions on the one hand and conserves the shared 
radio resources by using a smaller TCP window size on 
the other hand. 
4.4 TCP Performance in more complex 

Topologies with several concurrent Flows 
In this section, we evaluate the examined TCP 

variants in more complex scenarios with multiple 
concurrent flows.  
4.4.1 Grid Topology 

Figure 15 shows the node distribution and flow 
patterns used for the grid simulation. The grid consists of 
21 nodes, whereas all horizontally and vertically adjacent 
nodes are 200 meters apart. We consider a total of six 

competing FTP flows, three horizontal and three vertical. 
In such topology, all flows interfere with each other, 
increasing contention on the link layer. In this simulation, 
we do not only consider the aggregate goodput over all 
flows, but also the achieved goodput of each flow as well 
as the fairness degree for each of the examined TCP 
variants. Figure 16 plots the aggregate goodput of TCP 
Vegas and TCP NewReno for different bandwidths, both 
with and without ACK thinning. We observe that for 2 
Mbit/s, TCP NewReno slightly outperforms TCP Vegas, 
whereas for 5.5 and 11 Mbit/s, both variants have almost 
equal aggregate goodput. Figure 16 further shows that 
applying ACK thinning for TCP Vegas does not yield 
any performance improvement for 2 Mbit/s, which is 
consistent with the results of the chain simulation. 
However, as bandwidth availability increases, the 
performance of TCP Vegas with ACK thinning improves 
over the performance of TCP Vegas. As for TCP 
NewReno with ACK thinning, its goodput also increases 
with increasing bandwidth, achieving higher values. 
However, as we are regarding a topology with multiple 
flows, the fairness factor plays a significant role in 
specifying the performance of a TCP variant. Due to the 
absence of global scheduling of IEEE 802.11, there exists 
a trade-off between the fairness between TCP flows and 
the aggregate goodput over all flows. That is, the more 
fairness is achieved, the more suffers the aggregate 
goodput, since the available bandwidth is not optimally 
used due to the increased contention between the TCP 
flows. Similar observations regarding such trade-off 
between fairness and aggregate goodput were made in 
[14]. In order to investigate the fairness of the examined 
TCP variants, we consider the goodput of each flow for a 
fixed bandwidth of 11 Mbit/s. Observing the results in 
Figure 17, we see that while TCP Vegas and TCP 
NewReno achieve almost an identical aggregate goodput, 
the flows of TCP Vegas achieve more fairness than the 
flows of TCP NewReno. Using TCP NewReno, flows  
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Fig 15: 21-node grid topology with 6 competing flows 
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Fig 16: Grid topology: Aggregate goodput for 

different bandwiths 
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Fig 17: Grid topology: Single goodput of each flow 
and aggregate goodput over all flows for different 

TCP variants at 11 Mbit/s 
 

Table 3: Grid topology: Jain’s fairness index 

TCP Vegas TCP NewReno
TCP Vegas w/ 
ACK Thinning

 TCP NewReno w/ 
ACK Thinning

2 Mbit/s
0.54          

[0.53 : 0.55]
0.32           

[0.31 : 0.33]
0.69             

[0.68 : 0.70]
0.40              

[0.38 : 0.42]

5.5 Mbit/s
0.64          

[0.60 : 0.68]
0.43           

[0.40 : 0.46]
0.87             

[0.84 : 0.90]
0.56              

[0.52 : 0.60]

11 Mbit/s
0.73          

[0.69 : 0.77]
0.52           

[0.48 : 0.56]
0.94             

[0.90 : 0.98]
0.63              

[0.60 : 0.66]  

one and six achieve the highest goodput on cost of the 
remaining flows, which basically starve. However, using 
TCP Vegas, flows one and six achieve less goodput, 
sacrificing more bandwidth for the remaining flows, and 
thus achieving more fairness. Regarding TCP NewReno 
with ACK thinning and TCP Vegas with ACK thinning, 
we observe similar effects. Although TCP NewReno with 
ACK thinning outperforms all other variants in terms of 
aggregate goodput, it achieves less fairness than TCP 
Vegas with ACK thinning. In fact, TCP Vegas with ACK 
thinning achieves the best fairness of all variants with 
only 10% less aggregate goodput than TCP NewReno 
with ACK thinning. Previous studies [14] have reported 
up to 42% less aggregate goodput in order to achieve 
near-optimal fairness. To formally investigate the 
fairness among all six TCP flows, we calculate Jain’s 
fairness index for each variant and bandwidth as defined 
in Section 4.1. The results are shown in Table 3. Recall 
that a fairness index of 1/n indicates worst fairness 
among n flows, while a fairness index of 1 indicates 
optimal fairness. The values in the table confirm our 
previous findings. Furthermore, we notice that not only 
ACK thinning improves the fairness of TCP Vegas and 
TCP NewReno, but also increasing the bandwidth, since 
both reducing the TCP ACKs as well as increasing the 
bandwidth result in less contention on the link layer, and 
thus less competition between the flows.  

Consistent with the results of Section 4.3, we 
conclude from Figures 16 and 17 as well as from Table 3 
that TCP Vegas with ACK thinning is the protocol of 
choice for achieving the best trade-off between aggregate 
goodput and fairness. Among all examined variants, TCP 
Vegas with ACK thinning achieves best fairness results 
and has only 10% less aggregate goodput than TCP 
NewReno with ACK thinning. 

4.4.2 Random Topology 
As a third topology, we consider a random topology 

of 120 nodes uniformly distributed on an area A = 
2500x1000 m2. We set 10 FTP connections that run 
simultaneously, with all FTP sources and destinations 
randomly selected. According to [2], all nodes in the 
network can communicate with each other over one or 
more hops with probability P = 99.9%. 

Figure 18 plots the aggregate goodput for the TCP 
variants at different bandwidths. Consistent with the 
results for the previous topology, we see that TCP Vegas 
and TCP NewReno achieve similar goodput for all 
bandwidths, with a maximum of 3% more goodput for 
TCP Vegas at 11 Mbit/s. Applying ACK thinning for 
both TCP Vegas and TCP NewReno also improves the 
goodput for increasing bandwidth. Different from the 
cases for 2 Mbit/s and 5.5 Mbit/s where TCP NewReno 
with ACK thinning slightly outperforms TCP Vegas with 
ACK thinning, both variants achieve identical goodput 
for 11 Mbit/s. Figure 19 shows the goodput of each flow 
as well as the aggregate goodput over all flows for all 
examined TCP variants and a bandwidth of 11 Mbit/s. 
Compliant with the results for the grid topology, we 
observe that by using TCP NewReno, the fourth flow 
gets the highest fraction of the available bandwidth on 
cost of the other flows, letting flows three and eight  
completely starve. Overall, TCP Vegas achieves more 
fairness than TCP NewReno, and applying ACK thinning 
further improves fairness, letting TCP Vegas with ACK 
thinning achieve the best fairness among all variants. 
Extending our findings of Figure 17, we observe that 
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Fig 18: Random topology: Aggregate goodput for 

different bandwiths 
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Fig 19: Random topology: Single goodput of each 
flow and aggregate goodput over all flows for 

different TCP variants at 11 Mbit/s 



 
Table 4: Random topology: Jain’s fairness 

index

TCP Vegas TCP NewReno
TCP Vegas w/ 
ACK Thinning

 TCP NewReno w/ 
ACK Thinning

2 Mbit/s
0.43          

[0.41 : 0.45]
0.22           

[0.20 : 0.24]
0.62             

[0.60 : 0.64]
0.40              

[0.38 : 0.42]

5.5 Mbit/s
0.80          

[0.77 : 0.83]
0.68           

[0.64 : 0.72]
0.87             

[0.85 : 0.89]
0.70              

[0.67 : 0.73]

11 Mbit/s
0.87          

[0.84 : 0.90]
0.72           

[0.70 : 0.74]
0.90             

[0.88 : 0.92]
0.74              

[0.71 : 0.77]  

TCP Vegas with ACK thinning achieves the same 
aggregate goodput as TCP NewReno with ACK thinning 
in spite of its best fairness results. In this case, TCP 
Vegas with ACK thinning achieves the best trade-off 
between aggregate goodput and fairness. Equivalent with 
the results for the grid topology, Table 4 confirms that 
both applying ACK thinning and increasing the 
bandwidth availability increases fairness for all variants. 
This simulation confirms that TCP Vegas with ACK 
thinning is the protocol of choice for all bandwidths and 
multi-flow environments. Figure 19 further extends our 
findings by showing that TCP Vegas with ACK Thinning 
can achieve best fairness results without sacrificing 
aggregate goodput in comparison to TCP NewReno with 
ACK thinning. From Table 3 and Table 4 we conclude 
that TCP Vegas achieves between 21% and 95% more 
fairness than TCP NewReno, whereas TCP Vegas with 
ACK thinning yields a fairness improvement of 22% to 
73% compared to TCP NewReno with ACK thinning. 

Conclusions 
We showed that in static multihop wireless networks 

using IEEE 802.11, TCP Vegas with parameters α = β = 
2 clearly outperforms TCP NewReno, which is widely 
deployed in wired networks. In fact, TCP Vegas achieves 
up to 83% higher goodput and up to 99% less packet 
retransmissions. Consistent with [1], we find that ACK 
thinning substantially increases the performance for TCP 
NewReno for persistent flows over IEEE 802.11 with 2 
Mbit/s bandwidth. However, we observe that this 
improvement is not due to the reduced number of link-
layer packet collisions triggered by hidden terminal 
effects. In fact, the key driver why ACK thinning 
improves the performance of TCP NewReno constitutes 
the fact that ACK thinning considerably reduces the 
average window size and, thus, helps TCP NewReno stay 
closer to the optimum window size for multihop wireless 
networks. TCP Vegas with appropriately chosen 
parameters already keeps its window size close to the 
optimum. As a consequence, ACK thinning yields almost 
no goodput improvement for TCP Vegas over IEEE 
802.11 with 2 Mbit/s bandwidth. For TCP Vegas over 
IEEE 802.11 with 5.5 Mbit/s and 11 Mbit/s bandwidths, 
ACK thinning yields up to 25% goodput improvement, 
because the reduced ACK stream causes better channel 
utilization for data packets. 

We find that TCP Vegas achieves better fairness than 
TCP NewReno and that both applying ACK thinning and 
increasing the bandwidth availability yield further 
fairness improvement, letting TCP Vegas with ACK 
thinning achieve the best fairness results among all 

examined variants for all bandwidths, with 24% to 73% 
more fairness than TCP NewReno with ACK thinning. 

Finally, it is noteworthy that the substantially reduced 
amount of packet retransmissions of TCP Vegas and TCP 
Vegas with ACK thinning results in significant savings 
of energy consumption. Thus, if we consider both 
goodput and fairness, the transport protocol of choice for 
ad hoc networked PDAs and other mobile devices with 
restricted energy resources should be TCP Vegas with 
ACK thinning in case of 2, 5.5 and 11 Mbit/s 
bandwidths, respectively. 
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