7 research outputs found
Π£ΡΠΎΠ²Π΅Π½Ρ ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²ΠΎ ΠΆΠΈΠ·Π½ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ Π² ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ ΠΡΠΈΠ²ΠΎΠ»ΠΆΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡΡΠ³Π°: ΡΠΎΠ²ΡΠ΅ΠΌΠ΅Π½Π½ΠΎΠ΅ ΡΠΎΡΡΠΎΡΠ½ΠΈΠ΅ ΠΈ Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ° ΡΠ°Π·Π²ΠΈΡΠΈΡ
This article reviews the research of interregional differences in the level and quality of live in the regions of the Privolzhsky (Volga) FederalΒ District (PFD). The regions of the district were ranked basedΒ on the integral estimation of quality of life of the population, leadersΒ and outsidersΒ were designated. Analysis of skewness coefficients ofΒ selected components of integral index revealed the multifacetedΒ nature of disparities inΒ well-being and quality of life within theΒ regions of the PFD.Β Measurements of this indicator over time showed that there has been a common trend to slow down the growth of theΒ well-being of theΒ population, and in many territories the situation isΒ characterized by stagnation and decline. In general, in the nextΒ years these trends may, inΒ the authorsβ opinion, continue. In this regard, estimating quantity characteristics of changes in some components of the well-being and qualityΒ of life in every region,Β reasons for the observed shifts are important in order to come upΒ with definite solutions on unwinding of imbalances inΒ socio-economic development of selected territories.Π ΡΡΠ°ΡΡΠ΅ ΠΈΠ·Π»Π°Π³Π°ΡΡΡΡ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΡΡΠ»Π΅Π΄ΠΎΠ²Π°Π½ΠΈΡ ΠΌΠ΅ΠΆΡΠ΅Π³ΠΈΠΎΠ½Π°Π»ΡΠ½ΡΡ
ΡΠ°Π·Π»ΠΈΡΠΈΠΉ Π² ΡΡΠΎΠ²Π½Π΅ ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π΅ ΠΆΠΈΠ·Π½ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ Π² ΡΡΠ±ΡΠ΅ΠΊΡΠ°Ρ
Β ΠΡΠΈΠ²ΠΎΠ»ΠΆΡΠΊΠΎΠ³ΠΎ ΡΠ΅Π΄Π΅ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΠΎΠΊΡΡΠ³Π° (ΠΠ€Π). ΠΠ°Β ΠΎΡΠ½ΠΎΠ²Π΅ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠΉ ΠΎΡΠ΅Π½ΠΊΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΆΠΈΠ·Π½ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΡΠΎΡΡΠ°Π²Π»Π΅Π½ ΡΠ΅ΠΉΡΠΈΠ½Π³ ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ²Β ΠΎΠΊΡΡΠ³Π°,Β ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½Ρ Π»ΠΈΠ΄Π΅ΡΡ ΠΈ Π°ΡΡΡΠ°ΠΉΠ΄Π΅ΡΡ. ΠΠ½Π°Π»ΠΈΠ· ΠΊΠΎΡΡΡΠΈΡΠΈΠ΅Π½ΡΠΎΠ² Π°ΡΠΈΠΌΠΌΠ΅ΡΡΠΈΡΠ½ΠΎΡΡΠΈ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
Β ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎΒ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ° Π²ΡΡΠ²ΠΈΠ» ΠΌΠ½ΠΎΠ³ΠΎΠ°ΡΠΏΠ΅ΠΊΡΠ½ΡΠΉ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΒ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°ΡΠΈΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ ΠΏΠΎ ΡΡΠΎΠ²Π½Ρ Π΅Π³ΠΎ Π±Π»Π°Π³ΠΎΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Ρ ΠΆΠΈΠ·Π½ΠΈ Π²Β ΡΠ°Π·Π»ΠΈΡΠ½ΡΡ
Β ΡΠ΅Π³ΠΈΠΎΠ½Π°Ρ
ΠΠ€Π.Β ΠΠΎΠ»ΡΡΠ΅Π½Π½ΡΠ΅ ΡΠ΅Π·ΡΠ»ΡΡΠ°ΡΡ ΠΈΠ·ΠΌΠ΅ΡΠ΅Π½ΠΈΠΉ ΡΡΠΎΠ³ΠΎ ΠΏΠΎΠΊΠ°Π·Π°ΡΠ΅Π»Ρ Π² Π΄ΠΈΠ½Π°ΠΌΠΈΠΊΠ΅Β ΡΠ²ΠΈΠ΄Π΅ΡΠ΅Π»ΡΡΡΠ²ΡΡΡ ΠΎ ΡΠΎΠΌ, ΡΡΠΎ Π² ΠΏΠΎΡΠ»Π΅Π΄Π½ΠΈΠ΅ Π΄Π²Π° Π³ΠΎΠ΄Π° ΠΎΡΠΌΠ΅ΡΠ°Π΅ΡΡΡΒ ΠΎΠ±ΡΠ°Ρ ΡΠ΅Π½Π΄Π΅Π½ΡΠΈΡ Π·Π°ΠΌΠ΅Π΄Π»Π΅Π½ΠΈΡΒ ΡΠΎΡΡΠ° Π±Π»Π°Π³ΠΎΡΠΎΡΡΠΎΡΠ½ΠΈΡ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ, Π° Π²ΠΎ ΠΌΠ½ΠΎΠ³ΠΈΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΡΡ
ΡΠΈΡΡΠ°ΡΠΈΡ Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΠ·ΡΠ΅ΡΡΡΒ ΡΡΠ°Π³Π½Π°ΡΠΈΠ΅ΠΉΒ ΠΈ ΡΠΏΠ°Π΄ΠΎΠΌ. Π ΡΠ΅Π»ΠΎΠΌ, Π² Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠ΅ Π³ΠΎΠ΄Ρ, ΠΏΠΎ ΠΌΠ½Π΅Π½ΠΈΡ Π°Π²ΡΠΎΡΠΎΠ², ΡΡΡΠ΅ΡΡΠ²ΡΠ΅ΡΒ Π²Π΅ΡΠΎΡΡΠ½ΠΎΡΡΡ ΡΠΎΡ
ΡΠ°Π½Π΅Π½ΠΈΡ Π²ΡΡΠ²Π»Π΅Π½Π½ΡΡ
ΡΡΠ΅Π½Π΄ΠΎΠ². Π ΡΡΠΎΠΌΒ ΠΊΠΎΠ½ΡΠ΅ΠΊΡΡΠ΅ ΠΎΠΏΡΠ΅Π΄Π΅Π»Π΅Π½ΠΈΠ΅Β ΠΊΠΎΠ»ΠΈΡΠ΅ΡΡΠ²Π΅Π½Π½ΡΡ
Ρ
Π°ΡΠ°ΠΊΡΠ΅ΡΠΈΡΡΠΈΠΊ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠΉ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠΎΡΡΠ°Π²Π»ΡΡΡΠΈΡ
ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎΒ ΠΈΠ½Π΄ΠΈΠΊΠ°ΡΠΎΡΠ° Π±Π»Π°Π³ΠΎΡΠΎΡΡΠΎΡΠ½ΠΈΡ ΠΈ ΠΊΠ°ΡΠ΅ΡΡΠ²Π° ΠΆΠΈΠ·Π½ΠΈ Π½Π°ΡΠ΅Π»Π΅Π½ΠΈΡ Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΌ ΠΈΠ· ΡΠ΅Π³ΠΈΠΎΠ½ΠΎΠ², Π° ΡΠ°ΠΊΠΆΠ΅Β Π²ΡΡΠ²Π»Π΅Π½ΠΈΠ΅ ΠΏΡΠΈΡΠΈΠ½ Π½Π°Π±Π»ΡΠ΄Π°Π΅ΠΌΡΡ
ΡΠ΄Π²ΠΈΠ³ΠΎΠ² ΠΊΡΠ°ΠΉΠ½Π΅ Π²Π°ΠΆΠ½Ρ Π΄Π»ΡΒ Π²ΡΡΠ°Π±ΠΎΡΠΊΠΈ ΠΊΠΎΠ½ΠΊΡΠ΅ΡΠ½ΡΡ
ΡΠ΅ΡΠ΅Π½ΠΈΠΉ ΠΏΠΎ ΡΠ³Π»Π°ΠΆΠΈΠ²Π°Π½ΠΈΡ Π΄ΠΈΡΠΏΡΠΎΠΏΠΎΡΡΠΈΠΉ Π² ΡΠΎΡΠΈΠ°Π»ΡΠ½ΠΎ-ΡΠΊΠΎΠ½ΠΎΠΌΠΈΡΠ΅ΡΠΊΠΎΠΌ ΡΠ°Π·Π²ΠΈΡΠΈΠΈ ΠΎΡΠ΄Π΅Π»ΡΠ½ΡΡ
ΡΠ΅ΡΡΠΈΡΠΎΡΠΈΠΉ
Using non-adiabatic excitation transfer for signal transmission between molecular logic gates
Molecular logic gates (MLG) are molecules which perform logic operations. Their integration into a computing system is a very difficult task which remains to be addressed. The problem lies in the field of signal exchange between the gates within the system. We propose using non-adiabatic excitation transfer between the gates to address this problem while absorption and fluorescence are left to communicate with external devices. Excitation transfer was studied using the modified Bixon-Jortner- Plotnikov theory on the example of the 3H-thioxanthene-TTF-dibenzo-BODIPY covalently linked triade. Several designs of the molecule were studied in vacuum and cyclohexane. It was found that the molecular logic system has to be planar and rigid to isolate radiative interfaces from other gates. Functioning of these gates is based on dark ΟΟβ-states in contrast to bright ΟΟβ-states of radiative interfaces. There are no fundamental difference between ΟΟβ β ΟΟβ and ΟΟβ β ΟΟβ transitions for cases when an exciton hopes from one gate to another. The rates of such transitions depend only on an energy gap between states and a distance between gates. A circuit is highly sensitive to the choice of solvent which could rearrange its state structure thereby altering its behavior. According to the obtained results, non-adiabatic transfer can be considered as one of the possible ways for transmitting a signal between MLGs
A simplified Bixon-Jortner-Plotnikov method for fast calculation of radiationless transfer rates in symmetric molecules
A simplified form of the Bixon-Jortner-Plotnikov (BJP) method is derived for calculation of internal conversion (IC) rate in a symmetrical molecule. The rate is a sum of contributions from individual transitions between vibronic states. For each transition, vibrational modes are divided into two groups, the promoting (one or two modes per electronic transition) and the surrounding ones. In the case of the non-totally symmetric transition in a symmetric molecule, the overwhelming majority of transitions do not contribute to the overall rate. Moreover, the promoting and surrounding modes belong to different symmetry representations and can be separated. It is proposed to deal with the promoting modes directly, while approximating the effect of the surrounding modes by a Pekarian function. The method was tested on polyacenes and it was shown that the calculated IC rates are in agreement with the experimental ones. The simplified method can be applied for calculating the rates of non-totally symmetric transition in a symmetric molecule, if its point symmetry group does not change after transition
ΠΠΎΠ½ΡΠΈΠ½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅ΡΠΈΠΌΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π²ΠΎ ΡΡΡΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π³Π΅ΠΉΠ·Π΅Π½Π±Π΅ΡΠ³ΠΎΠ²ΡΠΊΠΎΠΌ ΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½Π΅ΡΠΈΠΊΠ΅
The algorithm of approximate solution has been developed for the differential equation describing the
anharmonical change of the spin orientation angle in the model of ferromagnet with the exchange compe-
tition between nearest and next nearest magnetic neighbors and the easy axis exchange anisotropy. The
obvious dependence of the angle velocity from angle and initial condition has been derived by expanding
the first integral of the equation in the Taylor series in vicinity of initial conditionΠ Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π°Π½-
Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π° ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠΏΠΈΠ½Π° Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»Π΅Π³ΠΊΠΎΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½Π΅ΡΠΈΠΊΠ° Ρ ΠΊΠΎΠ½ΠΊΡ-
ΡΠ΅Π½ΡΠΈΠ΅ΠΉ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠΌΠΈ ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ Π·Π° Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠΌΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌΠΈ ΡΠΎΡΠ΅Π΄ΡΠΌΠΈ.
Π―Π²Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ ΡΠ³Π»Π° ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΏΡΡΠ΅ΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΡΡΠ΄ Π’Π΅ΠΉΠ»ΠΎΡΠ° Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈ
ΠΠΎΠ½ΡΠΈΠ½ΡΠ°Π»ΡΠ½ΠΎΠ΅ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½ΠΈΠ΅ Π² ΡΠ΅ΠΎΡΠΈΠΈ ΡΡΠ΅Π΄Π½Π΅Π³ΠΎ ΠΏΠΎΠ»Ρ Π½Π΅ΡΠΎΠΈΠ·ΠΌΠ΅ΡΠΈΠΌΡΡ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΡ ΡΠΎΡΡΠΎΡΠ½ΠΈΠΉ Π²ΠΎ ΡΡΡΡΡΡΠΈΡΠΎΠ²Π°Π½Π½ΠΎΠΌ Π³Π΅ΠΉΠ·Π΅Π½Π±Π΅ΡΠ³ΠΎΠ²ΡΠΊΠΎΠΌ ΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½Π΅ΡΠΈΠΊΠ΅
The algorithm of approximate solution has been developed for the differential equation describing the
anharmonical change of the spin orientation angle in the model of ferromagnet with the exchange compe-
tition between nearest and next nearest magnetic neighbors and the easy axis exchange anisotropy. The
obvious dependence of the angle velocity from angle and initial condition has been derived by expanding
the first integral of the equation in the Taylor series in vicinity of initial conditionΠ Π°Π·ΡΠ°Π±ΠΎΡΠ°Π½ Π°Π»Π³ΠΎΡΠΈΡΠΌ ΠΏΡΠΈΠ±Π»ΠΈΠΆΠ΅Π½Π½ΠΎΠ³ΠΎ ΡΠ΅ΡΠ΅Π½ΠΈΡ Π΄ΠΈΡΡΠ΅ΡΠ΅Π½ΡΠΈΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ, ΠΎΠΏΠΈΡΡΠ²Π°ΡΡΠ΅Π³ΠΎ Π°Π½-
Π³Π°ΡΠΌΠΎΠ½ΠΈΡΠ΅ΡΠΊΠΎΠ΅ ΠΈΠ·ΠΌΠ΅Π½Π΅Π½ΠΈΠ΅ ΡΠ³Π»Π° ΠΎΡΠΈΠ΅Π½ΡΠ°ΡΠΈΠΈ ΡΠΏΠΈΠ½Π° Π² ΠΌΠΎΠ΄Π΅Π»ΠΈ Π»Π΅Π³ΠΊΠΎΠΎΡΠ½ΠΎΠ³ΠΎ ΡΠ΅ΡΡΠΎΠΌΠ°Π³Π½Π΅ΡΠΈΠΊΠ° Ρ ΠΊΠΎΠ½ΠΊΡ-
ΡΠ΅Π½ΡΠΈΠ΅ΠΉ ΠΎΠ±ΠΌΠ΅Π½ΠΎΠ² ΠΌΠ΅ΠΆΠ΄Ρ Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠΌΠΈ ΠΈ ΡΠ»Π΅Π΄ΡΡΡΠΈΠΌΠΈ Π·Π° Π±Π»ΠΈΠΆΠ°ΠΉΡΠΈΠΌΠΈ ΠΌΠ°Π³Π½ΠΈΡΠ½ΡΠΌΠΈ ΡΠΎΡΠ΅Π΄ΡΠΌΠΈ.
Π―Π²Π½Π°Ρ Π·Π°Π²ΠΈΡΠΈΠΌΠΎΡΡΡ ΡΠ³Π»ΠΎΠ²ΠΎΠΉ ΡΠΊΠΎΡΠΎΡΡΠΈ ΠΎΡ ΡΠ³Π»Π° ΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈΡ ΠΏΠΎΠ»ΡΡΠ΅Π½Π° ΠΏΡΡΠ΅ΠΌ ΡΠ°Π·Π»ΠΎΠΆΠ΅Π½ΠΈΡ
ΠΏΠ΅ΡΠ²ΠΎΠ³ΠΎ ΠΈΠ½ΡΠ΅Π³ΡΠ°Π»Π° ΡΡΠ°Π²Π½Π΅Π½ΠΈΡ Π² ΡΡΠ΄ Π’Π΅ΠΉΠ»ΠΎΡΠ° Π² ΠΎΠΊΡΠ΅ΡΡΠ½ΠΎΡΡΠΈ Π½Π°ΡΠ°Π»ΡΠ½ΠΎΠ³ΠΎ ΡΡΠ»ΠΎΠ²ΠΈ