1,292 research outputs found

    Synthesis of Ligand free CdS Nanoparticles within a Sulfur Copolymer Matrix

    Get PDF
    Aliphatic ligands are typically used during the synthesis of nanoparticles to help mediate their growth in addition to operating as high temperature solvents. These coordinating ligands help solubilize and stabilize the nanoparticles while in solution, and can influence the resulting size and reactivity of the nanoparticles during their formation. Despite the ubiquity of using ligands during synthesis, the presence of aliphatic ligands on the nanoparticle surface can result in a number of problems during the end use of the nanoparticles, necessitating further ligand stripping or ligand exchange procedures. We have developed a way to synthesize cadmium sulfide CdS nanoparticles using a unique sulfur copolymer. This sulfur copolymer is primarily composed of elemental sulfur, which is a cheap and abundant material. The sulfur copolymer has the advantages of operating both as a high temperature solvent and as a sulfur source, which can react with a cadmium precursor during nanoparticle synthesis, resulting in the generation of ligand free CdS. During the reaction, only some of the copolymer is consumed to produce CdS, while the rest remains in the polymeric state, thereby producing a nanocomposite material. Once the reaction is finished, the copolymer stabilizes the nanoparticles within a solid polymeric matrix. The copolymer can then be removed before the nanoparticles are used, which produces nanoparticles that do not have organic coordinating ligands. This nascent synthesis technique presents a method to produce metal sulfide nanoparticles for a wide variety of applications where the presence of organic ligands is not desired

    Relativistic Calculation of the Meson Spectrum: a Fully Covariant Treatment Versus Standard Treatments

    Full text link
    A large number of treatments of the meson spectrum have been tried that consider mesons as quark - anti quark bound states. Recently, we used relativistic quantum "constraint" mechanics to introduce a fully covariant treatment defined by two coupled Dirac equations. For field-theoretic interactions, this procedure functions as a "quantum mechanical transform of Bethe-Salpeter equation". Here, we test its spectral fits against those provided by an assortment of models: Wisconsin model, Iowa State model, Brayshaw model, and the popular semi-relativistic treatment of Godfrey and Isgur. We find that the fit provided by the two-body Dirac model for the entire meson spectrum competes with the best fits to partial spectra provided by the others and does so with the smallest number of interaction functions without additional cutoff parameters necessary to make other approaches numerically tractable. We discuss the distinguishing features of our model that may account for the relative overall success of its fits. Note especially that in our approach for QCD, the resulting pion mass and associated Goldstone behavior depend sensitively on the preservation of relativistic couplings that are crucial for its success when solved nonperturbatively for the analogous two-body bound-states of QED.Comment: 75 pages, 6 figures, revised content

    Pair Excitations and Vertex Corrections in Fermi Fluids

    Full text link
    Based on an equations--of--motion approach for time--dependent pair correlations in strongly interacting Fermi liquids, we have developed a theory for describing the excitation spectrum of these systems. Compared to the known ``correlated'' random--phase approximation (CRPA), our approach has the following properties: i) The CRPA is reproduced when pair fluctuations are neglected. ii) The first two energy--weighted sumrules are fulfilled implying a correct static structure. iii) No ad--hoc assumptions for the effective mass are needed to reproduce the experimental dispersion of the roton in 3He. iv) The density response function displays a novel form, arising from vertex corrections in the proper polarisation. Our theory is presented here with special emphasis on this latter point. We have also extended the approach to the single particle self-energy and included pair fluctuations in the same way. The theory provides a diagrammatic superset of the familiar GW approximation. It aims at a consistent calculation of single particle excitations with an accuracy that has previously only been achieved for impurities in Bose liquids.Comment: to be published in: JLTP (2007) Proc. Int. Symp. QFS2006, 1-6 Aug. 2006, Kyoto, Japa

    The continuing saga of Sakurai's object (V4334 Sgr): dust production and helium line emission

    Get PDF
    We report further UKIRT spectroscopic observations of Sakurai's object (V4334 Sgr) made in 1999 April/May in the 1-4.75 µm range, and find that the emission is dominated by amorphous carbon at T[subscript d] ~ 600. The estimated maximum grain size is 0.6 µm, and the mass lower limit is 1.7 ± 0.2 x 10[superscript -8] M[subscript ¤] to 8.9 ± 0.6 x 10[superscript -7] M[subscript ¤] for distances of 1.1-8 kpc. For 3.8 kpc the mass is 2.0 ± 0.1 x 10[superscript -7] M[subscript ¤]. We also report strong He i emission at 1.083 µm, in contrast to the strong absorption in this line in 1998. We conclude that the excitation is collisional, and is probably caused by a wind, consistent with the P Cygni profile observed by Eyres et al. in 1998

    Chiral Lagrangians at finite density

    Get PDF
    The effective SU(2) chiral Lagrangian with external sources is given in the presence of non-vanishing nucleon densities by calculating the in-medium contributions of the chiral pion-nucleon Lagrangian. As a by product, a relativistic quantum field theory for Fermi many-particle systems at zero temperature is directly derived from relativistic quantum field theory with functional methods.Comment: 6 Pages, 3 figures, REVTeX. Extended version. Explicit Feynman rules are give

    Carbon clusters near the crossover to fullerene stability

    Get PDF
    The thermodynamic stability of structural isomers of C24\mathrm{C}_{24}, C26\mathrm{C}_{26}, C28\mathrm{C}_{28} and C32\mathrm{C}_{32}, including fullerenes, is studied using density functional and quantum Monte Carlo methods. The energetic ordering of the different isomers depends sensitively on the treatment of electron correlation. Fixed-node diffusion quantum Monte Carlo calculations predict that a C24\mathrm{C}_{24} isomer is the smallest stable graphitic fragment and that the smallest stable fullerenes are the C26\mathrm{C}_{26} and C28\mathrm{C}_{28} clusters with C2v\mathrm{C}_{2v} and Td\mathrm{T}_{d} symmetry, respectively. These results support proposals that a C28\mathrm{C}_{28} solid could be synthesized by cluster deposition.Comment: 4 pages, includes 4 figures. For additional graphics, online paper and related information see http://www.tcm.phy.cam.ac.uk/~prck

    Controlling anomalous stresses in soft field-responsive systems

    Get PDF
    We report a new phenomenon occurring in field-responsive suspensions: shear-induced anomalous stresses. Competition between a rotating field and a shear flow originates a multiplicity of anomalous stress behaviors in suspensions of bounded dimers constituted by induced dipoles. The great variety of stress regimes includes non-monotonous behaviors, multi-resonances, negative viscosity effect and blockades. The reversibility of the transitions between the different regimes and the self-similarity of the stresses make this phenomenon controllable and therefore applicable to modify macroscopic properties of soft condensed matter phasesComment: 5 pages, 6 figures, submitted to PR

    Short-time scaling behavior of growing interfaces

    Full text link
    The short-time evolution of a growing interface is studied within the framework of the dynamic renormalization group approach for the Kadar-Parisi-Zhang (KPZ) equation and for an idealized continuum model of molecular beam epitaxy (MBE). The scaling behavior of response and correlation functions is reminiscent of the ``initial slip'' behavior found in purely dissipative critical relaxation (model A) and critical relaxation with conserved order parameter (model B), respectively. Unlike model A the initial slip exponent for the KPZ equation can be expressed by the dynamical exponent z. In 1+1 dimensions, for which z is known exactly, the analytical theory for the KPZ equation is confirmed by a Monte-Carlo simulation of a simple ballistic deposition model. In 2+1 dimensions z is estimated from the short-time evolution of the correlation function.Comment: 27 pages LaTeX with epsf style, 4 figures in eps format, submitted to Phys. Rev.

    The longitudinal cross section of vector meson electroproduction

    Get PDF
    We analyze electroproduction of light vector mesons (V=rho, phi and omega) at small Bjorken-x in the handbag approach in which the process factorizes into general parton distributions and partonic subprocesses. The latter are calculated in the modified perturbative approach where the transverse momenta of the quark and antiquark forming the vector meson are retained and Sudakov suppressions are taken into account. Modeling the generalized parton distributions through double distributions and using simple Gaussian wavefunctions for the vector mesons, we compute the longitudinal cross sections at large photon virtualities. The results are in fair agreement with the findings of recent experiments performed at HERA and HERMES.Comment: 27 pages, 20 figures, using LATEX with graphic
    corecore