13,232 research outputs found
A Renormalization Group Analysis of the NCG constraints m_{top} = 2\,m_W},
We study the evolution under the renormalization group of the restrictions on
the parameters of the standard model coming from Non-Commutative Geometry,
namely and . We adopt the point of
view that these relations are to be interpreted as {\it tree level} constraints
and, as such, can be implemented in a mass independent renormalization scheme
only at a given energy scale . We show that the physical predictions on
the top and Higgs masses depend weakly on .Comment: 7 pages, FTUAM-94/2, uses harvma
Organic Molecules in the Galactic Center. Hot Core Chemistry without Hot Cores
We study the origin of large abundances of complex organic molecules in the
Galactic center (GC). We carried out a systematic study of the complex organic
molecules CH3OH, C2H5OH, (CH3)2O, HCOOCH3, HCOOH, CH3COOH, H2CO, and CS toward
40 GC molecular clouds. Using the LTE approximation, we derived the physical
properties of GC molecular clouds and the abundances of the complex
molecules.The CH3OH abundance between clouds varies by nearly two orders of
magnitude from 2.4x10^{-8} to 1.1x10^{-6}. The abundance of the other complex
organic molecules relative to that of CH3OH is basically independent of the
CH3OH abundance, with variations of only a factor 4-8. The abundances of
complex organic molecules in the GC are compared with those measured in hot
cores and hot corinos, in which these complex molecules are also abundant. We
find that both the abundance and the abundance ratios of the complex molecules
relative to CH3OH in hot cores are similar to those found in the GC clouds.
However, hot corinos show different abundance ratios than observed in hot cores
and in GC clouds. The rather constant abundance of all the complex molecules
relative to CH3OH suggests that all complex molecules are ejected from grain
mantles by shocks. Frequent (similar 10^{5}years) shocks with velocities >6km/s
are required to explain the high abundances in gas phase of complex organic
molecules in the GC molecular clouds. The rather uniform abundance ratios in
the GC clouds and in Galactic hot cores indicate a similar average composition
of grain mantles in both kinds of regions. The Sickle and the Thermal Radio
Arches, affected by UV radiation, show different relative abundances in the
complex organic molecules due to the differentially photodissociation of these
molecules.Comment: 18 pages, 10 Postscript figures, uses aa.cls, aa.bst, 10pt.rtx,
natbib.sty, revsymb.sty revtex4.cls, aps.rtx and aalongtabl.sty. Accepted in
A&A 2006. version 2. relocated figures and tables. Language editor
suggestions. added reference
Physical qubits from charged particles: IR divergences in quantum information
We consider soft photons effects (IR structure of QED) on the construction of
physical qubits. Soft-photons appear when we build charged qubits from the
asymptotic states of QED. This construction is necessary in order to include
the effect of soft photons on entanglement measures. The nonexistence of free
charged particles (due to the long range of QED interactions) lead us to
question the sense of the very concept of free charged qubit. In this letter,
using the "dressing" formalism, we build physical charged qubits from dressed
fields which have the correct asymptotic behavior, are gauge invariant, their
propagators have a particle pole structure and are free from infrared
divergences. Finally, we discuss the impact of the soft corrections on the
entanglement measures.Comment: 4 pages, 2 figures, RevTeX. Version 2: Some references update
Universal Conductance Distributions in the Crossover between Diffusive and Localization Regimes
The full distribution of the conductance in quasi-one-dimensional
wires with rough surfaces is analyzed from the diffusive to the localization
regime. In the crossover region, where the statistics is dominated by only one
or two eigenchannels, the numerically obtained P(G) is found to be independent
of the details of the system with the average conductance as the only
scaling parameter. For < e^2/h, P(G) is given by an essentially
``one-sided'' log-normal distribution. In contrast, for e^2/h <= 2e^2/h,
the shape of P(G) remarkable agrees with those predicted by random matrix
theory for two fluctuating transmission eigenchannels.Comment: Accepted for publication in Phys. Rev. Let
Research on nonlinear and quantum optics at the photonics and quantum information group of the University of Valladolid
We outline the main research lines in Nonlinear and Quantum Optics of the Group of Photonics and Quantum Information at the University of Valladolid. These works focus on Optical Solitons, Quantum Information using Photonic Technologies and the development of new materials for Nonlinar Optics. The investigations on optical solitons cover both temporal solitons in dispersion managed fiber links and nonparaxial spatial solitons as described by the Nonlinear Helmholtz Equation. Within the Quantum Information research lines of the group, the studies address new photonic schemes for quantum computation and the multiplexing of quantum data. The investigations of the group are, to a large extent, based on intensive and parallel computations. Some associated numerical techniques for the development of the activities described are briefly sketched
Multi-Point Propagators in Cosmological Gravitational Instability
We introduce the concept of multi-point propagators between linear cosmic
fields and their nonlinear counterparts in the context of cosmological
perturbation theory. Such functions express how a non-linearly evolved Fourier
mode depends on the full ensemble of modes in the initial density field. We
identify and resum the dominant diagrams in the large- limit, showing
explicitly that multi-point propagators decay into the nonlinear regime at the
same rate as the two-point propagator. These analytic results generalize the
large- limit behavior of the two-point propagator to arbitrary order. We
measure the three-point propagator as a function of triangle shape in numerical
simulations and confirm the results of our high- resummation. We show that
any point spectrum can be reconstructed from multi-point propagators, which
leads to a physical connection between nonlinear corrections to the power
spectrum at small scales and higher-order correlations at large scales. As a
first application of these results, we calculate the reduced bispectrum at
one-loop in renormalized perturbation theory and show that we can predict the
decrease in its dependence on triangle shape at redshift zero, when standard
perturbation theory is least successful.Comment: 21 pages, 14 figures. Minor changes to match published version (Fig
11 changed, added reference
The U(1)A anomaly in noncommutative SU(N) theories
We work out the one-loop anomaly for noncommutative SU(N) gauge
theories up to second order in the noncommutative parameter .
We set and conclude that there is no breaking of the classical
symmetry of the theory coming from the contributions that are either
linear or quadratic in . Of course, the ordinary anomalous
contributions will be still with us. We also show that the one-loop
conservation of the nonsinglet currents holds at least up to second order in
. We adapt our results to noncommutative gauge theories with
SO(N) and U(1) gauge groups.Comment: 50 pages, 5 figures in eps files. Some comments and references adde
- …