13,232 research outputs found

    A Renormalization Group Analysis of the NCG constraints m_{top} = 2\,m_W}, mHiggs=3.14mWm_{Higgs} = 3.14 \, m_W

    Full text link
    We study the evolution under the renormalization group of the restrictions on the parameters of the standard model coming from Non-Commutative Geometry, namely mtop=2mWm_{top} = 2\,m_W and mHiggs=3.14mWm_{Higgs} = 3.14 \, m_W. We adopt the point of view that these relations are to be interpreted as {\it tree level} constraints and, as such, can be implemented in a mass independent renormalization scheme only at a given energy scale μ0\mu_0. We show that the physical predictions on the top and Higgs masses depend weakly on μ0\mu_0.Comment: 7 pages, FTUAM-94/2, uses harvma

    Organic Molecules in the Galactic Center. Hot Core Chemistry without Hot Cores

    Get PDF
    We study the origin of large abundances of complex organic molecules in the Galactic center (GC). We carried out a systematic study of the complex organic molecules CH3OH, C2H5OH, (CH3)2O, HCOOCH3, HCOOH, CH3COOH, H2CO, and CS toward 40 GC molecular clouds. Using the LTE approximation, we derived the physical properties of GC molecular clouds and the abundances of the complex molecules.The CH3OH abundance between clouds varies by nearly two orders of magnitude from 2.4x10^{-8} to 1.1x10^{-6}. The abundance of the other complex organic molecules relative to that of CH3OH is basically independent of the CH3OH abundance, with variations of only a factor 4-8. The abundances of complex organic molecules in the GC are compared with those measured in hot cores and hot corinos, in which these complex molecules are also abundant. We find that both the abundance and the abundance ratios of the complex molecules relative to CH3OH in hot cores are similar to those found in the GC clouds. However, hot corinos show different abundance ratios than observed in hot cores and in GC clouds. The rather constant abundance of all the complex molecules relative to CH3OH suggests that all complex molecules are ejected from grain mantles by shocks. Frequent (similar 10^{5}years) shocks with velocities >6km/s are required to explain the high abundances in gas phase of complex organic molecules in the GC molecular clouds. The rather uniform abundance ratios in the GC clouds and in Galactic hot cores indicate a similar average composition of grain mantles in both kinds of regions. The Sickle and the Thermal Radio Arches, affected by UV radiation, show different relative abundances in the complex organic molecules due to the differentially photodissociation of these molecules.Comment: 18 pages, 10 Postscript figures, uses aa.cls, aa.bst, 10pt.rtx, natbib.sty, revsymb.sty revtex4.cls, aps.rtx and aalongtabl.sty. Accepted in A&A 2006. version 2. relocated figures and tables. Language editor suggestions. added reference

    Physical qubits from charged particles: IR divergences in quantum information

    Get PDF
    We consider soft photons effects (IR structure of QED) on the construction of physical qubits. Soft-photons appear when we build charged qubits from the asymptotic states of QED. This construction is necessary in order to include the effect of soft photons on entanglement measures. The nonexistence of free charged particles (due to the long range of QED interactions) lead us to question the sense of the very concept of free charged qubit. In this letter, using the "dressing" formalism, we build physical charged qubits from dressed fields which have the correct asymptotic behavior, are gauge invariant, their propagators have a particle pole structure and are free from infrared divergences. Finally, we discuss the impact of the soft corrections on the entanglement measures.Comment: 4 pages, 2 figures, RevTeX. Version 2: Some references update

    Universal Conductance Distributions in the Crossover between Diffusive and Localization Regimes

    Full text link
    The full distribution of the conductance P(G)P(G) in quasi-one-dimensional wires with rough surfaces is analyzed from the diffusive to the localization regime. In the crossover region, where the statistics is dominated by only one or two eigenchannels, the numerically obtained P(G) is found to be independent of the details of the system with the average conductance as the only scaling parameter. For < e^2/h, P(G) is given by an essentially ``one-sided'' log-normal distribution. In contrast, for e^2/h <= 2e^2/h, the shape of P(G) remarkable agrees with those predicted by random matrix theory for two fluctuating transmission eigenchannels.Comment: Accepted for publication in Phys. Rev. Let

    Research on nonlinear and quantum optics at the photonics and quantum information group of the University of Valladolid

    Get PDF
    We outline the main research lines in Nonlinear and Quantum Optics of the Group of Photonics and Quantum Information at the University of Valladolid. These works focus on Optical Solitons, Quantum Information using Photonic Technologies and the development of new materials for Nonlinar Optics. The investigations on optical solitons cover both temporal solitons in dispersion managed fiber links and nonparaxial spatial solitons as described by the Nonlinear Helmholtz Equation. Within the Quantum Information research lines of the group, the studies address new photonic schemes for quantum computation and the multiplexing of quantum data. The investigations of the group are, to a large extent, based on intensive and parallel computations. Some associated numerical techniques for the development of the activities described are briefly sketched

    Multi-Point Propagators in Cosmological Gravitational Instability

    Full text link
    We introduce the concept of multi-point propagators between linear cosmic fields and their nonlinear counterparts in the context of cosmological perturbation theory. Such functions express how a non-linearly evolved Fourier mode depends on the full ensemble of modes in the initial density field. We identify and resum the dominant diagrams in the large-kk limit, showing explicitly that multi-point propagators decay into the nonlinear regime at the same rate as the two-point propagator. These analytic results generalize the large-kk limit behavior of the two-point propagator to arbitrary order. We measure the three-point propagator as a function of triangle shape in numerical simulations and confirm the results of our high-kk resummation. We show that any nn-point spectrum can be reconstructed from multi-point propagators, which leads to a physical connection between nonlinear corrections to the power spectrum at small scales and higher-order correlations at large scales. As a first application of these results, we calculate the reduced bispectrum at one-loop in renormalized perturbation theory and show that we can predict the decrease in its dependence on triangle shape at redshift zero, when standard perturbation theory is least successful.Comment: 21 pages, 14 figures. Minor changes to match published version (Fig 11 changed, added reference

    The U(1)A anomaly in noncommutative SU(N) theories

    Full text link
    We work out the one-loop U(1)AU(1)_A anomaly for noncommutative SU(N) gauge theories up to second order in the noncommutative parameter θμν\theta^{\mu\nu}. We set θ0i=0\theta^{0i}=0 and conclude that there is no breaking of the classical U(1)AU(1)_A symmetry of the theory coming from the contributions that are either linear or quadratic in θμν\theta^{\mu\nu}. Of course, the ordinary anomalous contributions will be still with us. We also show that the one-loop conservation of the nonsinglet currents holds at least up to second order in θμν\theta^{\mu\nu}. We adapt our results to noncommutative gauge theories with SO(N) and U(1) gauge groups.Comment: 50 pages, 5 figures in eps files. Some comments and references adde
    corecore