18 research outputs found
Preferential Localization of Glutamate Receptors Opposite Sites of High Presynaptic Release
AbstractBackground: The localization of glutamate receptors is essential for the formation and plasticity of excitatory synapses. These receptors cluster opposite neurotransmitter release sites of glutamatergic neurons, but these release sites have heterogeneous structural and functional properties. At the Drosophila neuromuscular junction, receptors expressed in a single postsynaptic cell are confronted with an array of hundreds of apposed active zones. Hence, this is an ideal preparation for the investigation of whether receptor clustering is sensitive to the morphological and physiological properties of the apposed active zones.Results: To investigate the relationship between the localization of glutamate receptors and the properties of the apposed active zones, we investigated receptor localization in mutants in which receptors are limited. We find that receptors are not uniformly distributed opposite the full array of active zones but that some active zones have a disproportionately large share of receptors as assayed by receptor levels and response to transmitter. The active zones at which receptors preferentially cluster are larger and have a higher neurotransmitter release probability than the average active zone. We find a similar relationship between glutamate receptor clusters and active-zone size at wild-type synapses.Conclusions: When confronted with an array of active zones, glutamate receptors preferentially cluster opposite the largest and most physiologically active sites. These results suggest an activity-dependent matching of pre- and postsynaptic function at the level of a single active zone
Differential localization of glutamate receptor subunits at the drosophila neuromuscular junction
The subunit composition of postsynaptic neurotransmitter receptors is a key determinant of synaptic physiology. Two glutamate receptor subunits, Drosophila glutamate receptor IIA (DGluRIIA) and DGluRIIB, are expressed at the Drosophila neuromuscular junction and are redundant for viability, yet differ in their physiological properties. We now identify a third glutamate receptor subunit at the Drosophila neuromuscular junction, DGluRIII, which is essential for viability. DGluRIII is required for the synaptic localization of DGluRIIA and DGluRIIB and for synaptic transmission. Either DGluRIIA or DGluRIIB, but not both, is required for the synaptic localization of DGluRIII. DGluRIIA and DGluRIIB compete with each other for access to DGluRIII and subsequent localization to the synapse. These results are consistent with a model of a multimeric receptor in which DGluRIII is an essential component. At single postsynaptic cells that receive innervation from multiple motoneurons, DGluRIII is abundant at all synapses. However, DGluRIIA and DGluRIIB are differentially localized at the postsynaptic density opposite distinct motoneurons. Hence, innervating motoneurons may regulate the subunit composition of their receptor fields within a shared postsynaptic cell. The capacity of presynaptic inputs to shape the subunit composition of postsynaptic receptors could be an important mechanism for synapse-specific regulation of synaptic function and plasticity
Characterization of a novel, dominant negative KCNJ2 mutation associated with Andersen-Tawil syndrome
Andersen-Tawil syndrome is characterized by periodic paralysis, ventricular ectopy and dysmorphic features. Approximately 60% of patients exhibit loss-of-function mutations in KCNJ2, which encodes the inwardly rectifying K(+) channel pore forming subunit Kir2.1. Here, we report the identification of a novel KCNJ2 mutation (G211T), resulting in the amino acid substitution D71Y, in a patient presenting with signs and symptoms of Andersen-Tawil syndrome. The functional properties of the mutant subunit were characterized using voltage-clamp experiments on transiently transfected HEK-293 cells and neonatal mouse ventricular myocytes. Whole-cell current recordings of transfected HEK-293 cells demonstrated that the mutant protein Kir2.1-D71Y fails to form functional ion channels when expressed alone, but co-assembles with wild-type Kir2.1 subunits and suppresses wild-type subunit function. Further analysis revealed that current suppression requires at least two mutant subunits per channel. The D71Y mutation does not measurably affect the membrane trafficking of either the mutant or the wild-type subunit or alter the kinetic properties of the currents. Additional experiments revealed that expression of the mutant subunit suppresses native I(K1) in neonatal mouse ventricular myocytes. Simulations predict that the D71Y mutation in human ventricular myocytes will result in a mild prolongation of the action potential and potentially increase cell excitability. These experiments indicate that the Kir2.1-D71Y mutant protein functions as a dominant negative subunit resulting in reduced inwardly rectifying K(+) current amplitudes and altered cellular excitability in patients with Andersen-Tawil syndrome
A fully implantable pacemaker for the mouse: from battery to wireless power.
Animal models have become a popular platform for the investigation of the molecular and systemic mechanisms of pathological cardiovascular physiology. Chronic pacing studies with implantable pacemakers in large animals have led to useful models of heart failure and atrial fibrillation. Unfortunately, molecular and genetic studies in these large animal models are often prohibitively expensive or not available. Conversely, the mouse is an excellent species for studying molecular mechanisms of cardiovascular disease through genetic engineering. However, the large size of available pacemakers does not lend itself to chronic pacing in mice. Here, we present the design for a novel, fully implantable wireless-powered pacemaker for mice capable of long-term (>30 days) pacing. This design is compared to a traditional battery-powered pacemaker to demonstrate critical advantages achieved through wireless inductive power transfer and control. Battery-powered and wireless-powered pacemakers were fabricated from standard electronic components in our laboratory. Mice (n = 24) were implanted with endocardial, battery-powered devices (n = 14) and epicardial, wireless-powered devices (n = 10). Wireless-powered devices were associated with reduced implant mortality and more reliable device function compared to battery-powered devices. Eight of 14 (57.1%) mice implanted with battery-powered pacemakers died following device implantation compared to 1 of 10 (10%) mice implanted with wireless-powered pacemakers. Moreover, device function was achieved for 30 days with the wireless-powered device compared to 6 days with the battery-powered device. The wireless-powered pacemaker system presented herein will allow electrophysiology studies in numerous genetically engineered mouse models as well as rapid pacing-induced heart failure and atrial arrhythmia in mice
Assembly process of wireless powered pacemaker.
<p>(a) Platinum wire is attached to the circuit board, wound together, and coiled with a 0.5 cc syringe. (b) A bead of Silastic is placed on a piece of parafilm(1). The device is placed on the bead(2), coated with an additional layer of Silastic(3), and topped with a piece of gas permeable film(4). (c) Final product. (d) Artistic rendering of external transmitter interacting with abdominally implanted receiver in mouse.</p
<i>In vivo</i> testing of wireless pacemaker.
<p>(a) Lead II ECG during normal sinus rhythm (top) and during LV apical pacing (bottom). (b) Pacing pulse width threshold of wireless device over 30 days for all mice with stable capture. Solid red line shows linear regression on mean pulse width thresholds. Dashed black lines show 95% confidence interval bounds for the regression.</p