3,762 research outputs found

    Arresting woodland bird decline in Australian agricultural landscapes: potential application of the European agri-environment model

    Get PDF
    This paper considered the applicability of the European model of land stewardship payments, in particular its support for biodiversity conservation in agricultural landscapes, to an Australian context. More broadly, the research approach described in the paper may also be applied to assessing the suitability of overseas stewardship schemes to the provision of any ecoservice in Australia, such as carbon sequestration and floodwater regulation

    Feline Hypertrophic Cardiomyopathy: A Spontaneous Large Animal Model of Human HCM.

    Get PDF
    Hypertrophic cardiomyopathy (HCM) is a common disease in pet cats, affecting 10-15% of the pet cat population. The similarity to human HCM, the rapid progression of disease, and the defined and readily determined endpoints of feline HCM make it an excellent natural model that is genotypically and phenotypically similar to human HCM. The Maine Coon and Ragdoll cats are particularly valuable models of HCM because of myosin binding protein-C mutations and even higher disease incidence compared to the overall feline population. The cat overcomes many of the limitations of rodent HCM models, and can provide enhanced translation of information from in vitro and induced small animal models to human clinical trials. Physicians and veterinarians working together in a collaborative and interdisciplinary approach can accelerate the discovery of more effective treatments for this and other cardiovascular diseases affecting human and veterinary patients

    Cascade of Complexity in Evolving Predator-Prey Dynamics

    Full text link
    We simulate an individual-based model that represents both the phenotype and genome of digital organisms with predator-prey interactions. We show how open-ended growth of complexity arises from the invariance of genetic evolution operators with respect to changes in the complexity, and that the dynamics which emerges is controlled by a non-equilibrium critical point. The mechanism is analogous to the development of the cascade in fluid turbulence.Comment: 5 pages, 3 figures; added comments on system size scaling and turbulence analogy, added error estimates of data collapse parameters. Slightly enhanced from the version which will appear in PR

    Structure of Small-Scale Magnetic Fields in the Kinematic Dynamo Theory

    Get PDF
    In the interstellar medium and protogalactic plasmas, the magnetic Prandtl number is very large, and the kinematic dynamo therefore produces a broad spectrum of growing magnetic fluctuations at small (subviscous) scales. The condition for the onset of nonlinear effects depends on the structure of the field lines. We study the statistical correlations that are set up in the field pattern and show that the magnetic-field lines possess a folding structure, where most of the scale decrease is due to the field variation across itself, while the scale of the field variation along itself stays approximately constant. Specifically, we find that, though both the magnetic energy and the mean square curvature of the field lines grow exponentially, the field strength and the field-line curvature are anticorrelated, i.e. the curved field is relatively weak, while the growing field is relatively flat. The detailed analysis of the statistics of the curvature shows that it possesses a stationary limiting distribution with the bulk located at the values of curvature comparable to the characteristic wave number of the velocity field and a power-like tail extending to large values of curvature where it is cut off by the resistive regularization. The growth of the curvature occurs in a small fraction of the total volume of the system, is due to the intermittent nature of the curvature distribution, and is limited only by the resistive cut-off. The implication of the folding effect is that the advent of the Lorentz back reaction occurs when the magnetic energy approaches that of the smallest turbulent eddies

    Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy

    Get PDF
    ObjectivesThis study sought to assess the impact of body mass index (BMI) on cardiac phenotypic and clinical course in a multicenter hypertrophic cardiomyopathy (HCM) cohort.BackgroundIt is unresolved whether clinical variables promoting left ventricular (LV) hypertrophy in the general population, such as obesity, may influence cardiac phenotypic and clinical course in patients with HCM.MethodsIn 275 adult HCM patients (age 48 ± 14 years; 70% male), we assessed the relation of BMI to LV mass, determined by cardiovascular magnetic resonance (CMR) and heart failure progression.ResultsAt multivariate analysis, BMI proved independently associated with the magnitude of hypertrophy: pre-obese and obese HCM patients (BMI 25 to 30 kg/m2 and >30 kg/m2, respectively) showed a 65% and 310% increased likelihood of an LV mass in the highest quartile (>120 g/m2), compared with normal weight patients (BMI <25 kg/m2; hazard ratio [HR]: 1.65; 95% confidence interval [CI]: 0.73 to 3.74, p = 0.22 and 3.1; 95% CI: 1.42 to 6.86, p = 0.004, respectively). Other features associated with LV mass >120 g/m2 were LV outflow obstruction (HR: 4.9; 95% CI: 2.4 to 9.8; p < 0.001), systemic hypertension (HR: 2.2; 95% CI: 1.1 to 4.5; p = 0.026), and male sex (HR: 2.1; 95% CI: 0.9 to 4.7; p = 0.083). During a median follow-up of 3.7 years (interquartile range: 2.5 to 5.3), obese patients showed an HR of 3.6 (95% CI: 1.2 to 10.7, p = 0.02) for developing New York Heart Association (NYHA) functional class III to IV symptoms compared to nonobese patients, independent of outflow obstruction. Noticeably, the proportion of patients in NYHA functional class III at the end of follow-up was 13% among obese patients, compared with 6% among those of normal weight (p = 0.03).ConclusionsIn HCM patients, extrinsic factors such as obesity are independently associated with increase in LV mass and may dictate progression of heart failure symptoms

    On the connection between gamma and radio radiation spectra in pulsars

    Full text link
    The model of pulsar radio emission is discussed in which a coherent radio emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X and gamma radiation are considered as the result of low-frequency radio emission inverse Comp-ton scattering on ultra relativistic electrons accelerated in the gap. The influence of the pulsar magnetic field on Compton scattering is taken into account. The relation of radio and gamma radiation spectra has been found in the framework of the model.Comment: 15 pages, 3 figures, Russian version accepted to JETP, partly published in JETP Letters, Vol. 85, #6 (2007
    • …
    corecore