2,713 research outputs found
Clinical Course and Significance of Hypertrophic Cardiomyopathy Without Left Ventricular Hypertrophy
The onset of a small-scale turbulent dynamo at low magnetic Prandtl numbers
We study numerically the dependence of the critical magnetic Reynolds number
Rmc for the turbulent small-scale dynamo on the hydrodynamic Reynolds number
Re. The turbulence is statistically homogeneous, isotropic, and
mirror--symmetric. We are interested in the regime of low magnetic Prandtl
number Pm=Rm/Re<1, which is relevant for stellar convective zones, protostellar
disks, and laboratory liquid-metal experiments. The two asymptotic
possibilities are Rmc->const as Re->infinity (a small-scale dynamo exists at
low Pm) or Rmc/Re=Pmc->const as Re->infinity (no small-scale dynamo exists at
low Pm). Results obtained in two independent sets of simulations of MHD
turbulence using grid and spectral codes are brought together and found to be
in quantitative agreement. We find that at currently accessible resolutions,
Rmc grows with Re with no sign of approaching a constant limit. We reach the
maximum values of Rmc~500 for Re~3000. By comparing simulations with Laplacian
viscosity, fourth-, sixth-, and eighth-order hyperviscosity and Smagorinsky
large-eddy viscosity, we find that Rmc is not sensitive to the particular form
of the viscous cutoff. This work represents a significant extension of the
studies previously published by Schekochihin et al. 2004, PRL 92, 054502 and
Haugen et al. 2004, PRE, 70, 016308 and the first detailed scan of the
numerically accessible part of the stability curve Rmc(Re).Comment: 4 pages, emulateapj aastex, 2 figures; final version as published in
ApJL (but with colour figures
Electric fields in plasmas under pulsed currents
Electric fields in a plasma that conducts a high-current pulse are measured
as a function of time and space. The experiment is performed using a coaxial
configuration, in which a current rising to 160 kA in 100 ns is conducted
through a plasma that prefills the region between two coaxial electrodes. The
electric field is determined using laser spectroscopy and line-shape analysis.
Plasma doping allows for 3D spatially resolved measurements. The measured peak
magnitude and propagation velocity of the electric field is found to match
those of the Hall electric field, inferred from the magnetic-field front
propagation measured previously.Comment: 13 pages, 13 figures, submitted to PR
Obesity and its association to phenotype and clinical course in hypertrophic cardiomyopathy
ObjectivesThis study sought to assess the impact of body mass index (BMI) on cardiac phenotypic and clinical course in a multicenter hypertrophic cardiomyopathy (HCM) cohort.BackgroundIt is unresolved whether clinical variables promoting left ventricular (LV) hypertrophy in the general population, such as obesity, may influence cardiac phenotypic and clinical course in patients with HCM.MethodsIn 275 adult HCM patients (age 48 ± 14 years; 70% male), we assessed the relation of BMI to LV mass, determined by cardiovascular magnetic resonance (CMR) and heart failure progression.ResultsAt multivariate analysis, BMI proved independently associated with the magnitude of hypertrophy: pre-obese and obese HCM patients (BMI 25 to 30 kg/m2 and >30 kg/m2, respectively) showed a 65% and 310% increased likelihood of an LV mass in the highest quartile (>120 g/m2), compared with normal weight patients (BMI <25 kg/m2; hazard ratio [HR]: 1.65; 95% confidence interval [CI]: 0.73 to 3.74, p = 0.22 and 3.1; 95% CI: 1.42 to 6.86, p = 0.004, respectively). Other features associated with LV mass >120 g/m2 were LV outflow obstruction (HR: 4.9; 95% CI: 2.4 to 9.8; p < 0.001), systemic hypertension (HR: 2.2; 95% CI: 1.1 to 4.5; p = 0.026), and male sex (HR: 2.1; 95% CI: 0.9 to 4.7; p = 0.083). During a median follow-up of 3.7 years (interquartile range: 2.5 to 5.3), obese patients showed an HR of 3.6 (95% CI: 1.2 to 10.7, p = 0.02) for developing New York Heart Association (NYHA) functional class III to IV symptoms compared to nonobese patients, independent of outflow obstruction. Noticeably, the proportion of patients in NYHA functional class III at the end of follow-up was 13% among obese patients, compared with 6% among those of normal weight (p = 0.03).ConclusionsIn HCM patients, extrinsic factors such as obesity are independently associated with increase in LV mass and may dictate progression of heart failure symptoms
Self-similar turbulent dynamo
The amplification of magnetic fields in a highly conducting fluid is studied
numerically. During growth, the magnetic field is spatially intermittent: it
does not uniformly fill the volume, but is concentrated in long thin folded
structures. Contrary to a commonly held view, intermittency of the folded field
does not increase indefinitely throughout the growth stage if diffusion is
present. Instead, as we show, the probability-density function (PDF) of the
field strength becomes self-similar. The normalized moments increase with
magnetic Prandtl number in a powerlike fashion. We argue that the
self-similarity is to be expected with a finite flow scale and system size. In
the nonlinear saturated state, intermittency is reduced and the PDF is
exponential. Parallels are noted with self-similar behavior recently observed
for passive-scalar mixing and for map dynamos.Comment: revtex, 4 pages, 5 figures; minor changes to match published versio
On the connection between gamma and radio radiation spectra in pulsars
The model of pulsar radio emission is discussed in which a coherent radio
emis-sion is excited in a vacuum gap above polar cap of neutron star. Pulsar X
and gamma radiation are considered as the result of low-frequency radio
emission inverse Comp-ton scattering on ultra relativistic electrons
accelerated in the gap. The influence of the pulsar magnetic field on Compton
scattering is taken into account. The relation of radio and gamma radiation
spectra has been found in the framework of the model.Comment: 15 pages, 3 figures, Russian version accepted to JETP, partly
published in JETP Letters, Vol. 85, #6 (2007
Biodiversity offsets may miss opportunities to mitigate impacts on ecosystem services
© The Ecological Society of America Biodiversity offsets are most commonly used to mitigate the adverse impacts of development on biodiversity, but some offsets are now also designed to support ecosystem services (ES) goals. Here, we assemble a global database of biodiversity offsets (n = 70) to show that 41% already take ES into consideration, with the objective of enhancing cultural, regulating, and provisioning services. We found that biodiversity offsets were more likely to consider ES when (1) development projects reported impacts on services, (2) offsets had voluntary biodiversity goals, and (3) conservation organizations were involved. However, offsets that considered ES were similar in design (eg offsetting approach, extent, and location) to offsets focused solely on biodiversity, suggesting that including ES goals may represent an attempt to strengthen community support for development projects, rather than to offset known ES impacts. We also found that 34% of all offsets displaced people and negatively affected livelihoods. Therefore, when biodiversity and ES are linked, current practices may not actually improve outcomes, instead incurring additional costs to communities and companies
- …