53 research outputs found

    SMN Protein Can Be Reliably Measured in Whole Blood with an Electrochemiluminescence (ECL) Immunoassay: Implications for Clinical Trials

    Get PDF
    Spinal muscular atrophy (SMA) is caused by defects in the survival motor neuron 1 (SMN1) gene that encodes survival motor neuron (SMN) protein. The majority of therapeutic approaches currently in clinical development for SMA aim to increase SMN protein expression and there is a need for sensitive methods able to quantify increases in SMN protein levels in accessible tissues. We have developed a sensitive electrochemiluminescence (ECL)-based immunoassay for measuring SMN protein in whole blood with a minimum volume requirement of 5μL. The SMN-ECL immunoassay enables accurate measurement of SMN in whole blood and other tissues. Using the assay, we measured SMN protein in whole blood from SMA patients and healthy controls and found that SMN protein levels were associated with SMN2 copy number and were greater in SMA patients with 4 copies, relative to those with 2 and 3 copies. SMN protein levels did not vary significantly in healthy individuals over a four-week period and were not affected by circadian rhythms. Almost half of the SMN protein was found in platelets. We show that SMN protein levels in C/C-allele mice, which model a mild form of SMA, were high in neonatal stage, decreased in the first few weeks after birth, and then remained stable throughout the adult stage. Importantly, SMN protein levels in the CNS correlated with SMN levels measured in whole blood of the C/C-allele mice. These findings have implications for the measurement of SMN protein induction in whole blood in response to SMN-upregulating therapy

    Identification of a targetable KRAS-mutant epithelial population in non-small cell lung cancer

    Get PDF
    Lung cancer is the leading cause of cancer deaths. Tumor heterogeneity, which hampers development of targeted therapies, was herein deconvoluted via single cell RNA sequencingin aggressive human adenocarcinomas (carrying Kras-mutations) and comparable murine model. We identified a tumor-specific, mutant-KRAS-associated subpopulation which is conserved in both human and murine lung cancer. We previously reported a key role for the oncogene BMI-1 in adenocarcinomas. We therefore investigated the effects of in vivo PTC596 treatment, which affects BMI-1 activity, in our murine model. Post-treatment, MRI analysis showed decreased tumor size, while single cell transcriptomics concomitantly detected near complete ablation of the mutant-KRAS-associated subpopulation, signifying the presence of a pharmacologically targetable, tumor-associated subpopulation. Our findings therefore hold promise for the development of a targeted therapy for KRAS-mutant adenocarcinomas

    Report of the National Institutes of Health SARS-CoV-2 Antiviral Therapeutics Summit

    Get PDF
    The NIH Virtual SARS-CoV-2 Antiviral Summit, held on 6 November 2020, was organized to provide an overview on the status and challenges in developing antiviral therapeutics for coronavirus disease 2019 (COVID-19), including combinations of antivirals. Scientific experts from the public and private sectors convened virtually during a live videocast to discuss severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) targets for drug discovery as well as the preclinical tools needed to develop and evaluate effective small-molecule antivirals. The goals of the Summit were to review the current state of the science, identify unmet research needs, share insights and lessons learned from treating other infectious diseases, identify opportunities for public-private partnerships, and assist the research community in designing and developing antiviral therapeutics. This report includes an overview of therapeutic approaches, individual panel summaries, and a summary of the discussions and perspectives on the challenges ahead for antiviral development

    Divergent pathways of gene expression are activated by the RAGE ligands S100b and AGE-BSA.

    No full text
    Activation of the receptor for advanced glycation end products (RAGE) reportedly triggers a variety of proinflammatory responses. However, our previous work revealed that RAGE-binding AGEs free of endotoxin were incapable of inducing vascular cell adhesion molecule-1 (VCAM-1) or tumor necrosis factor-alpha (TNF-alpha) expression. Thus, the objective of this study was to clarify the role of AGEs in cell activation through gene expression profiling using both in vitro and in vivo model systems. Endothelial cells treated with AGE-BSA, previously shown to bind RAGE with high affinity, did not show gene expression changes indicative of an inflammatory response. In contrast, the alternate RAGE ligand, S100b, triggered an increase in endothelial mRNA expression of a variety of immune-related genes. The effects of AGEs were studied in vivo using healthy mice exposed to two different treatment conditions: 1) intravenous injection of a single dose of model AGEs or 2) four intraperitoneal injections of model AGEs (once per day). In both cases, the liver was extracted for gene expression profiling. Both of the short-term AGE treatments resulted in a moderate increase in liver mRNA levels for genes involved in macrophage-based clearance/detoxification of foreign agents. Our findings using AGEs with strong RAGE-binding properties indicate that AGEs may not uniformly play a role in cellular activation

    Pharmacodynamic evaluation of the neutralization of endotoxin by PMX622 in mice.

    No full text
    Polymyxin B (PMB) binds to and neutralizes endotoxin, but its systemic clinical utility is limited by neuro- and nephrotoxicity. PMX622 is a covalent conjugate of PMB and Dextran-70 designed to retain the ability of PMB to neutralize endotoxin and to retain the favorable colloidal, pharmacokinetic, and metabolic properties of Dextran-70. PMX622 has demonstrated efficacy in a number of animal models and effectively neutralized endotoxin in phase I clinical trials. Here, we systematically evaluated the pharmacodynamic properties of PMX622 in a murine model of endotoxin-induced lethality in galactosamine-sensitized mice. PMX622 completely and dose dependently inhibited lethality in this model. A stoichiometric relationship was found between the endotoxin challenge dose and the dose of PMX622 needed for protection. PMX622 neutralized endotoxin from four different genera of gram-negative bacteria but not Neisseria meningitidis. PMX622 was significantly less toxic than PMB in the mouse, suggesting that PMX622 has a better margin of safety than PMB. The timing of PMX622 administration relative to endotoxin was crucial. PMX622 was active for several hours prior to the endotoxin challenge; however, PMX622 did not protect mice if administered >/=15 min after endotoxin challenge. This suggests that PMX622 would best be clinically used prophylactically rather than therapeutically. These studies will be crucial in designing and interpreting human clinical trials assessing PMX622 efficacy

    Identification of benzazole compounds that induce HIV-1 transcription.

    No full text
    Despite advances in antiretroviral therapy, HIV-1 infection remains incurable in patients and continues to present a significant public health burden worldwide. While a number of factors contribute to persistent HIV-1 infection in patients, the presence of a stable, long-lived reservoir of latent provirus represents a significant hurdle in realizing an effective cure. One potential strategy to eliminate HIV-1 reservoirs in patients is reactivation of latent provirus with latency reversing agents in combination with antiretroviral therapy, a strategy termed "shock and kill". This strategy has shown limited clinical effectiveness thus far, potentially due to limitations of the few therapeutics currently available. We have identified a novel class of benzazole compounds effective at inducing HIV-1 expression in several cellular models. These compounds do not act via histone deacetylase inhibition or T cell activation, and show specificity in activating HIV-1 in vitro. Initial exploration of structure-activity relationships and pharmaceutical properties indicates that these compounds represent a potential scaffold for development of more potent HIV-1 latency reversing agents

    The anti-mitotic agents PTC-028 and PTC596 display potent activity in pre-clinical models of multiple myeloma but challenge the role of BMI-1 as an essential tumour gene.

    Full text link
    Future progress in the treatment of multiple myeloma (MM) requires both the characterisation of key drivers of the disease and novel, innovative approaches to tackle these vulnerabilities. The present study focussed on the pre-clinical evaluation of a novel drug class, BMI-1 modulators, in MM. We demonstrate potent activity of PTC-028 and PTC596 in a comprehensive set of in vitro and in vivo models, including models of drug resistance and stromal support. Treatment of MM cells with PTC-028 and PTC596 downregulated BMI-1 protein levels, which was found to correlate with drug activity. Surprisingly, BMI-1 was dispensable for the activity of BMI-1 modulators and MM cell growth. Our data rather point to mitotic arrest accompanied by myeloid cell leukaemia-1 (MCL-1) loss as key anti-MM mechanisms and reveal impaired MYC and AKT signalling activity due to BMI-1 modulator treatment. Moreover, we observed a complete eradication of MM after PTC596 treatment in the 5TGM.1 in vivo model and define epigenetic compounds and B cell leukaemia/lymphoma 2 homology domain 3 (BH3) mimetics as promising combination partners. These results bring into question the postulated role of BMI-1 as an essential MM gene and confirm BMI-1 modulators as potent anti-mitotic agents with encouraging pre-clinical activity that supports their rapid translation into clinical trials

    Reduction of retinal ganglion cell death in mouse models of familial dysautonomia using AAV-mediated gene therapy and splicing modulators

    No full text
    Abstract Familial dysautonomia (FD) is a rare neurodevelopmental and neurodegenerative disease caused by a splicing mutation in the Elongator Acetyltransferase Complex Subunit 1 (ELP1) gene. The reduction in ELP1 mRNA and protein leads to the death of retinal ganglion cells (RGCs) and visual impairment in all FD patients. Currently patient symptoms are managed, but there is no treatment for the disease. We sought to test the hypothesis that restoring levels of Elp1 would thwart the death of RGCs in FD. To this end, we tested the effectiveness of two therapeutic strategies for rescuing RGCs. Here we provide proof-of-concept data that gene replacement therapy and small molecule splicing modifiers effectively reduce the death of RGCs in mouse models for FD and provide pre-clinical foundational data for translation to FD patients

    Compounds 1 and 2 induce HIV-1 transcription in ACH-2 and U1.

    No full text
    <p>Cells were treated with 30 μM of Cmpd 1 and Cmpd 2 for 24 h. RNA was prepared and HIV expression was monitored by qRT-PCR. Data are presented as the log fold induction over DMSO treated controls. Each bar represents treatments performed in triplicate. Error bars represent the standard error. These data are from an individual experiment that is representative of 3 independent experiments.</p
    corecore