21,346 research outputs found

    Genetics of common polygenic ischaemic stroke: current understanding and future challenges.

    Get PDF
    Stroke is the third commonest cause of death and the major cause of adult neurological disability worldwide. While much is known about conventional risk factors such as hypertension, diabetes and incidence of smoking, these environmental factors only account for a proportion of stroke risk. Up to 50% of stroke risk can be attributed to genetic risk factors, although to date no single risk allele has been convincingly identified as contributing to this risk. Advances in the field of genetics, most notably genome wide association studies (GWAS), have revealed genetic risks in other cardiovascular disease and these techniques are now being applied to ischaemic stroke. This paper covers previous genetic studies in stroke including candidate gene studies, discusses the genome wide association approach, and future techniques such as next generation sequencing and the post-GWAS era. The review also considers the overlap from other cardiovascular diseases and whether findings from these may also be informative in ischaemic stroke

    Electrolyte solutions at curved electrodes. I. Mesoscopic approach

    Full text link
    Within the Poisson-Boltzmann (PB) approach electrolytes in contact with planar, spherical, and cylindrical electrodes are analyzed systematically. The dependences of their capacitance CC on the surface charge density σ\sigma and the ionic strength II are examined as function of the wall curvature. The surface charge density has a strong effect on the capacitance for small curvatures whereas for large curvatures the behavior becomes independent of σ\sigma. An expansion for small curvatures gives rise to capacitance coefficients which depend only on a single parameter, allowing for a convenient analysis. The universal behavior at large curvatures can be captured by an analytic expression.Comment: accepted for publication in the Journal of Chemical Physic

    Surface properties of fluids of charged platelike colloids

    Full text link
    Surface properties of mixtures of charged platelike colloids and salt in contact with a charged planar wall are studied within density functional theory. The particles are modeled by hard cuboids with their edges constrained to be parallel to the Cartesian axes corresponding to the Zwanzig model and the charges of the particles are concentrated in their centers. The density functional applied is an extension of a recently introduced functional for charged platelike colloids. Analytically and numerically calculated bulk and surface phase diagrams exhibit first-order wetting for sufficiently small macroion charges and isotropic bulk order as well as first-order drying for sufficiently large macroion charges and nematic bulk order. The asymptotic wetting and drying behavior is investigated by means of effective interface potentials which turn out to be asymptotically the same as for a suitable neutral system governed by isotropic nonretarded dispersion forces. Wetting and drying points as well as predrying lines and the corresponding critical points have been located numerically. A crossover from monotonic to non-monotonic electrostatic potential profiles upon varying the surface charge density has been observed. Due to the presence of both the Coulomb interactions and the hard-core repulsions, the surface potential and the surface charge do not vanish simultaneously, i.e., the point of zero charge and the isoelectric point of the surface do not coincide.Comment: 14 pages, submitte

    Electrostatic interaction between colloidal particles trapped at an electrolyte interface

    Full text link
    The electrostatic interaction between colloidal particles trapped at the interface between two immiscible electrolyte solutions is studied in the limit of small inter-particle distances. Within an appropriate model exact analytic expressions for the electrostatic potential as well as for the surface and line interaction energies are obtained. They demonstrate that the widely used superposition approximation, which is commonly applied to large distances between the colloidal particles, fails qualitatively at small distances and is quantitatively unreliable even at large distances. Our results contribute to an improved description of the interaction between colloidal particles trapped at fluid interfaces.Comment: Submitte

    Stability of thin liquid films and sessile droplets under confinement

    Full text link
    The stability of nonvolatile thin liquid films and of sessile droplets is strongly affected by finite size effects. We analyze their stability within the framework of density functional theory using the sharp kink approximation, i.e., on the basis of an effective interface Hamiltonian. We show that finite size effects suppress spinodal dewetting of films because it is driven by a long-wavelength instability. Therefore nonvolatile films are stable if the substrate area is too small. Similarly, nonvolatile droplets connected to a wetting film become unstable if the substrate area is too large. This instability of a nonvolatile sessile droplet turns out to be equivalent to the instability of a volatile drop which can attain chemical equilibrium with its vapor.Comment: 14 pages, 13 figure

    Poisson-Boltzmann study of the effective electrostatic interaction between colloids at an electrolyte interface

    Full text link
    The effective electrostatic interaction between a pair of colloids, both of them located close to each other at an electrolyte interface, is studied by employing the full, nonlinear Poisson-Boltzmann (PB) theory within classical density functional theory. Using a simplified yet appropriate model, all contributions to the effective interaction are obtained exactly, albeit numerically. The comparison between our results and those obtained within linearized PB theory reveals that the latter overestimates these contributions significantly at short inter-particle separations. Whereas the surface contributions to the linear and the nonlinear PB results differ only quantitatively, the line contributions show qualitative differences at short separations. Moreover, a dependence of the line contribution on the solvation properties of the two adjacent fluids is found, which is absent within the linear theory. Our results are expected to enrich the understanding of effective interfacial interactions between colloids

    Free Isotropic-Nematic Interfaces in Fluids of Charged Platelike Colloids

    Full text link
    Bulk properties and free interfaces of mixtures of charged platelike colloids and salt are studied within density-functional theory. The particles are modeled by hard cuboids with their edges constrained to be parallel to the artesian axes corresponding to the Zwanzig model. The charges of the particles are concentrated in their center. The density functional is derived by functional integration of an extension of the Debye-H\"uckel pair distribution function with respect to the interaction potential. For sufficiently small macroion charges, the bulk phase diagrams exhibit one isotropic and one nematic phase separated by a first-order phase transition. With increasing platelet charge, the isotropic and nematic binodals are shifted to higher densities. The Donnan potential between the coexisting isotropic and nematic phases is inferred from bulk structure calculations. Non-monotonic density and nematic order parameter profiles are found at a free interface interpolating between the coexisting isotropic and nematic bulk phases. Moreover, electrically charged layers form at the free interface leading to monotonically varying electrostatic potential profiles. Both the widths of the free interfaces and the bulk correlation lengths are approximately given by the Debye length. For fixed salt density, the interfacial tension decreases upon increasing the macroion charge.Comment: 11 pages, submitted to J. Chem. Phy

    Order of wetting transitions in electrolyte solutions

    Full text link
    For wetting films in dilute electrolyte solutions close to charged walls we present analytic expressions for their effective interface potentials. The analysis of these expressions renders the conditions under which corresponding wetting transitions can be first- or second-order. Within mean field theory we consider two models, one with short- and one with long-ranged solvent-solvent and solvent-wall interactions. The analytic results reveal in a transparent way that wetting transitions in electrolyte solutions, which occur far away from their critical point (i.e., the bulk correlation length is less than half of the Debye length) are always first-order if the solvent-solvent and solvent-wall interactions are short-ranged. In contrast, wetting transitions close to the bulk critical point of the solvent (i.e., the bulk correlation length is larger than the Debye length) exhibit the same wetting behavior as the pure, i.e., salt-free, solvent. If the salt-free solvent is governed by long-ranged solvent-solvent as well as long-ranged solvent-wall interactions and exhibits critical wetting, adding salt can cause the occurrence of an ion-induced first-order thin-thick transition which precedes the subsequent continuous wetting as for the salt-free solvent.Comment: Submitte
    corecore