Surface properties of mixtures of charged platelike colloids and salt in
contact with a charged planar wall are studied within density functional
theory. The particles are modeled by hard cuboids with their edges constrained
to be parallel to the Cartesian axes corresponding to the Zwanzig model and the
charges of the particles are concentrated in their centers. The density
functional applied is an extension of a recently introduced functional for
charged platelike colloids. Analytically and numerically calculated bulk and
surface phase diagrams exhibit first-order wetting for sufficiently small
macroion charges and isotropic bulk order as well as first-order drying for
sufficiently large macroion charges and nematic bulk order. The asymptotic
wetting and drying behavior is investigated by means of effective interface
potentials which turn out to be asymptotically the same as for a suitable
neutral system governed by isotropic nonretarded dispersion forces. Wetting and
drying points as well as predrying lines and the corresponding critical points
have been located numerically. A crossover from monotonic to non-monotonic
electrostatic potential profiles upon varying the surface charge density has
been observed. Due to the presence of both the Coulomb interactions and the
hard-core repulsions, the surface potential and the surface charge do not
vanish simultaneously, i.e., the point of zero charge and the isoelectric point
of the surface do not coincide.Comment: 14 pages, submitte